

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-20/0603 of 13 November 2020

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

fischer Injection system FIS V Plus

Bonded anchor for use in concrete

fischerwerke GmbH & Co. KG Otto-Hahn-Straße 15 79211 Denzlingen DEUTSCHLAND

fischerwerke

37 pages including 3 annexes which form an integral part of this assessment

EAD 330499-01-0601 Edition 04/2020

European Technical Assessment ETA-20/0603

Page 2 of 37 | 13 November 2020

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

European Technical Assessment ETA-20/0603

Page 3 of 37 | 13 November 2020

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The "fischer Injection system FIS V Plus" is a bonded anchor consisting of a cartridge with injection mortar according to Annex A 4 and a steel element according to Annex A 1 to A 3.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 and/or 100 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading)	See Annex C 1, C 2, C 4 to C 9, B 4, B 5
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C 1 to C 3
Displacements under short-term and long-term loading	See Annex C 10 to C 11
Characteristic resistance and displacements for seismic performance categories C1 and C2	See Annex C 12 to C 15

3.2 Hygiene, health and the environment (BWR 3)

Essential characteristic	Performance
Content, emission and/or release of dangerous substances	No performance assessed

European Technical Assessment ETA-20/0603

Page 4 of 37 | 13 November 2020

English translation prepared by DIBt

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with the European Assessment Document EAD 330499-01-0601 the applicable European legal act is: [96/582/EC].

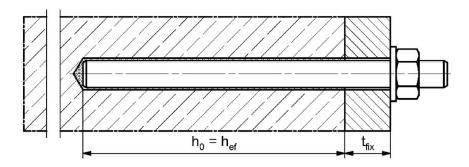
The system to be applied is: 1

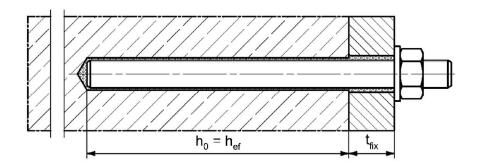
5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

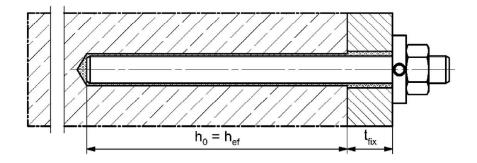
Issued in Berlin 13 November 2020 by Deutsches Institut für Bautechnik

Dipl.-Ing. Beatrix Wittstock Head of Section beglaubigt:


Lange


Installation conditions part 1

fischer anchor rod


Pre-positioned installation

Push through installation (annular gap filled with mortar)

Pre-positioned or push through installation with subsequently injected fischer filling disc (annular gap filled with mortar)

Figures not to scale

 $h_0 = drill hole depth$

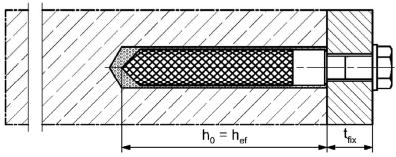
h_{ef} = effective embedment depth

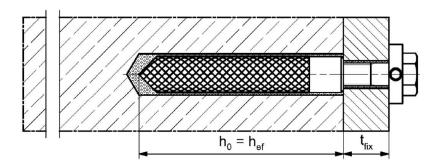
 t_{fix} = thickness of fixture

fischer injection system FIS V Plus

Product description

Installation conditions part 1


Annex A 1


Installation conditions part 2

fischer internal threaded anchor RG MI

Pre-positioned installation

Pre-positioned installation with subsequently injected fischer filling disc (annular gap filled with mortar)

Figures not to scale

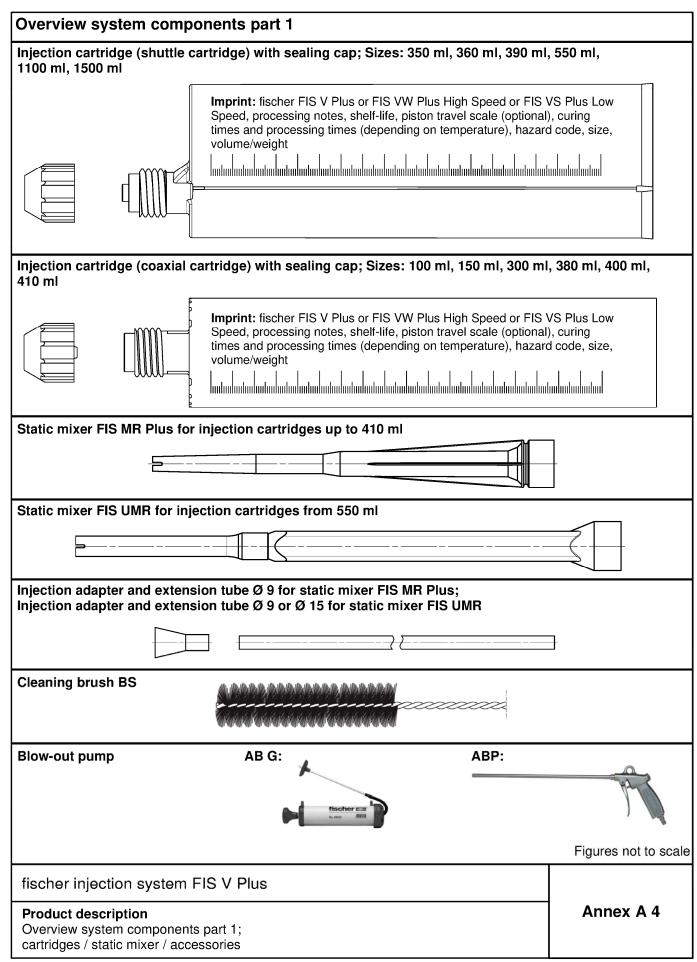
 $h_0 = drill hole depth$

h_{ef} = effective embedment depth

 t_{fix} = thickness of fixture

fischer injection system FIS V Plus

Product description


Installation conditions part 2

Annex A 2

Installation conditions part 3 Reinforcing bar fischer rebar anchor FRA **Pre-positioned installation** h_0 Push through installation (annular gap filled with mortar) h_0 Figures not to scale h_0 = drill hole depth hef = effective embedment depth t_{fix} = thickness of fixture fischer injection system FIS V Plus Annex A 3 **Product description** Installation conditions part 3

Overview system components part 2 fischer anchor rod Size: M6, M8, M10, M12, M16, M20, M24, M27, M30 fischer internal threaded anchor RG MI Size: M8, M10, M12, M16, M20 Screw / threaded rod / washer / hexagon nut fischer filling disc with injection adapter Reinforcing bar Nominal diameter: $\phi 8$, $\phi 10$, $\phi 12$, $\phi 14$, $\phi 16$, $\phi 20$, $\phi 25$, $\phi 28$ fischer rebar anchor FRA Size: M12, M16, M20, M24 Figures not to scale fischer injection system FIS V Plus Annex A 5 **Product description** Overview system components part 2; metal parts, injection adapter

Part	Designation		Material			
1	Injection cartridge					
		Steel	Stainless steel R	High corrosion resistant steel HCR		
	Steel grade	zinc plated	acc. to EN 10088-1:2014 Corrosion resistance class CRC III acc. to EN 1993-1-4:2015	acc. to EN 10088-1:2014 Corrosion resistance class CRC V acc. to EN 1993-1-4:2015		
2	Anchor rod	Property class 4.8, 5.8 or 8.8; EN ISO 898-1:2013 zinc plated \geq 5 μ m, ISO 4042:2018/Zn5/An(A2K) or hot dip galvanised \geq 40 μ m EN ISO 10684:2004 $f_{uk} \leq$ 1000 N/mm ² $A_5 > 12\%$ fracture elongation	Property class 50, 70 or 80 EN ISO 3506-1:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; 1.4062, 1.4662, 1.4462; EN 10088-1:2014 $f_{uk} \le 1000 \text{ N/mm}^2$ $A_5 > 12\%$ fracture elongation	Property class 50 or 80 EN ISO 3506-1:2009 or property class 70 with f_{yk} = 560 N/mm² 1.4565; 1.4529; EN 10088-1:2014 $f_{uk} \le 1000$ N/mm² $A_5 > 12\%$ fracture elongation		
			$A_5 > 8$ %, for applications with eismic performance category (
3	Washer ISO 7089:2000	zinc plated ≥ 5 μm, ISO 4042:2018/Zn5/An(A2K) or hot dip galvanised ≥ 40 μm EN ISO 10684:2004	1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; EN 10088-1:2014	1.4565; 1.4529; EN 10088-1:2014		
4	Hexagon nut	Property class 4, 5 or 8; EN ISO 898-2:2012 zinc plated ≥ 5 μm, ISO 4042:2018/Zn5/An(A2K) or hot dip galvanised ≥ 40 μm EN ISO 10684:2004	Property class 50, 70 or 80 EN ISO 3506-1:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; EN 10088-1:2014	Property class 50, 70 or 80 EN ISO 3506-1:2009 1.4565; 1.4529; EN 10088-1:2014		
5	fischer internal threaded anchor RG MI	Property class 5.8 ISO 898-1:2013 zinc plated ≥ 5 μm, ISO 4042:2018/Zn5/An(A2K)	Property class 70 EN ISO 3506-1:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; EN 10088-1:2014	Property class 70 EN ISO 3506-1:2009 1.4565; 1.4529; EN 10088-1:2014		
6	Commercial standard screw or threaded rod for fischer internal threaded anchor RG MI	Property class 5.8 or 8.8; EN ISO 898-1:2013 zinc plated \geq 5 μ m, ISO 4042:2018/Zn5/An(A2K) $A_5 > 8$ % fracture elongation	Property class 70 EN ISO 3506-1:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; EN 10088-1:2014 A ₅ > 8 % fracture elongation	Property class 70 EN ISO 3506-1:2009 1.4565; 1.4529; EN 10088-1:2014 $A_5 > 8$ % fracture elongation		
7	fischer filling disc similar to DIN 6319-G	zinc plated ≥ 5 µm, ISO 4042:2018/Zn5/An(A2K) or hot dip galvanised ≥ 40 µm EN ISO 10684:2004	1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; EN 10088-1:2014	1.4565;1.4529; EN 10088-1:2014		
8	Reinforcing bar EN 1992-1-1:2004 and AC:2010, Annex C	Bars and de-coiled rods, class f_{yk} and k according to NDP or $f_{uk} = f_{tk} = k \cdot f_{yk}$		1-1:2004/NA		
9	fischer rebar anchor FRA	Threaded part: Property class 70 or 80 EN ISO 3506-1:2009 Rebar part: Bars and de-coiled rods class B or C with f_{yk} and k according to NDP or NCL of EN 1992-1-1:2004+AC:2010 $f_{uk} = f_{tk} = k \cdot f_{yk}$ Threaded part: Property class 70 or 80 EN ISO 3506-1:2009 1.4401, 1.4404, 1.4571, 1.4578, 1.4439, 1.4362, 1.4062 acc. to EN 10088-1:2014 Corrosion resistance class CRC III acc. to EN 1993-1-4:2015 1.4565; 1.4529 acc. to EN 10088-1:2014 Corrosion resistance class CRC V acc. to EN 1993-1-4:2015				
Prod	her injection system duct description erials	FIS V Plus		Annex A 6		

Specifications of intended use (part 1) Table B1.1: Overview use and performance categories FIS V Plus with ... Anchor rod fischer internal Reinforcing bar fischer rebar threaded anchor anchor RG MI FRA **WARRANTAN AND THE STATE OF THE** Hammer drilling with standard drill all sizes Hammer drilling with hollow drill bit Nominal drill bit diameter (d₀) (fischer "FHD", Heller "Duster 12 mm to 35 mm Expert": Bosch "Speed Clean": Hilti "TE-CD, TE-YD", DreBo "D-Plus", DreBo "D-Max" Tables: Tables: uncracked Tables: Tables: all sizes C1.1 all sizes all sizes concrete C2.1 C3.2 C3.1 Static and quasi C4.1 C4.1 C4.1 C4.1 all sizes static load, in C5.1 φ 10 to C8.1 C9.1 M8 to C7.1 cracked C6.1 _2) C10.2 C11.1 C11.2 concrete M30 ф 28 C10.1 Tables: M10 C12.1 C11) to C13.1 M30 Seismic C14.1 _2) _2) _2) performance Tables: category M12 C12.1 C21) M16 C13.1 M20 C15.1 dry or wet 11 all sizes concrete Use category water filled 12 M12 to M30 all sizes _2) _2) hole Installation direction D3 (downward and horizontal and upwards (e.g. overhead) installation) $T_{i,min} = -10 \, ^{\circ}\text{C} \text{ to } T_{i,max} = +40 \, ^{\circ}\text{C}$ Installation temperature Temperature (max. short term temperature +80 °C; -40 °C to +80 °C range I max. long term temperature +50 °C) In-service temperature (max. short term temperature +120 °C; Temperature -40 °C to +120 °C range II max. long term temperature +72 °C) 1) Not for FIS VW Plus High Speed and FIS VS Plus Low Speed 2) No performance assessed fischer injection system FIS V Plus Annex B 1 Intended use Specifications (part 1)

Specifications of intended use (part 2)

Base materials:

 Compacted reinforced or unreinforced normal weight concrete without fibres of strength classes C20/25 to C50/60 according to EN 206:2013+A1:2016

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc coated steel, stainless steel or high corrosion resistant steel).
- For all other conditions according to EN1993-1-4:2015 corresponding to corrosion resistance classes to Annex A 6 Table A6.1.

Design:

- · Anchorages have to be designed by a responsible engineer with experience of concrete anchor design.
- Verifiable calculation notes and drawings are to be prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages are designed in accordance with: EN 1992-4:2018 and EOTA Technical Report TR 055, Edition February 2018.

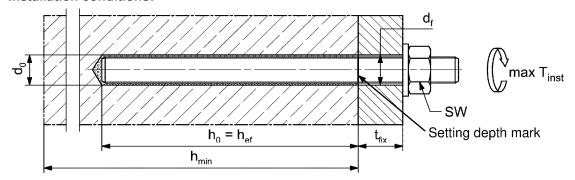
Installation:

- Anchor installation is to be carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site
- · In case of aborted hole: The hole shall be filled with mortar
- Anchorage depth should be marked and adhered to on installation
- · Overhead installation is allowed

fischer injection system FIS V Plus	
Intended use Specifications (part 2)	Annex B 2

Table B3.1: Installation parameters for anchor rods 1)												
Anchor rods			Thread	М6	M8	M10	M12	M16	M20	M24	M27	M30
Width across flats		SW		10	13	17	19	24	30	36	41	46
Nominal drill hole	diameter	d 0		8	10	12	14	18	24	28	30	35
Drill hole depth		h_0						$h_0 = h_e$	f			
Effective		h _{ef, min}		50	60	60	70	80	90	96	108	120
embedment depth	1	h _{ef, max}		72	160	200	240	320	400	480	540	600
Minimum spacing minimum edge dis		Smin = Cmin	[mm]	40	40	45	55	65	85	105	125	140
Diameter of the clearance hole of	pre-positioned installation	df		7	9	12	14	18	22	26	30	33
the fixture	push through installation	df		9	12	14	16	20	26	30	33	40
Minimum thicknes member	Minimum thickness of concrete member			ŀ	n _{ef} + 30	(≥100)		ŀ	n _{ef} + 2d	0	
Maximum installat	ion torque	max T _{inst}	[Nm]	5	10	20	40	60	120	150	200	300

¹⁾ minimum spacing and minimum edge distance see Annex B 4



Steel zinc plated PC ¹⁾ 8.8	• or +	Steel hot-dip PC ¹⁾ 8.8	•
High corrosion resistant steel HCR PC1) 50	•	High corrosion resistant steel HCR PC1) 70	-
High corrosion resistant steel HCR PC1) 80	(Stainless steel R property class 50	~
Stainless steel R property class 80	*		

Alternatively: Colour coding according to DIN 976-1: 2016

1) PC = property class

Installation conditions:

Commercial standard threaded rods, washers and hexagon nuts may also be used if the following requirements are fulfilled:

- Materials, dimensions and mechanical properties according to Annex A 6, Table A6.1
- · Inspection certificate 3.1 according to EN 10204:2004, the documents have to be stored
- · Setting depth is marked

Figures not to scale

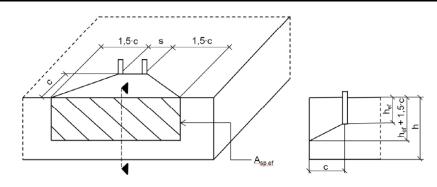
fischer injection system FIS V Plus	
Intended use Installation parameters anchor rods	Annex B 3

Table B4.1: Minimum spacing and minimum edge distance for anchor rods, reinforcing bars and fischer rebar anchor FRA						rcing	
Anchor rods		M6	M8	M10	M12	-	M16
Reinforcing bars / FRA (nominal diameter)	ф	-	8	10	12	14	16
Minimum edge distance							
Uncracked / cracked concrete	C _{min} [mm]	40	40	45	45	45	50
Minimum spacing	Smin			according to	Annex B 5	5	
Minimum spacing							
Uncracked / cracked concrete	S _{min} [mm]	40	40	45	55	60	65
Minimum edge distance	Cmin		;	according to	Annex B 5	5	
Required projecting area							
Uncracked concrete	[1000	8,0	8,0	13,0	22,0	23,0	24,0
Cracked concrete	- A _{sp,req} mm²]	6,5	6,5	10	16,5	17,5	18,5
Anchor rods		M20	M24	T _	M27		
Reinforcing bars / FRA			IVIZ4	<u> </u>	IVIZ /	-	M20
(nominal diameter)	Φ	20					M30
Minimum edge distance	I		-	25	-	28	M30 -
minimum cage aistance			-	25	-	28	M30 -
Uncracked / cracked concrete	Cmin	55	60	25 75	75	28	M30 - 80
,	C _{min} [mm]					80	-
Uncracked / cracked concrete	——— [mm] ŀ			75		80	-
Uncracked / cracked concrete Minimum spacing	Smin [mm]			75		80	-
Uncracked / cracked concrete Minimum spacing Minimum spacing	S _{min} [mm]	55	105	75 according to	Annex B 5	80	- 80
Uncracked / cracked concrete Minimum spacing Minimum spacing Uncracked / cracked concrete	S _{min} [mm]	55	105	75 according to	Annex B 5	80	- 80
Uncracked / cracked concrete Minimum spacing Minimum spacing Uncracked / cracked concrete Minimum edge distance	S _{min} [mm]	55	105	75 according to	Annex B 5	80	- 80
Uncracked / cracked concrete Minimum spacing Minimum spacing Uncracked / cracked concrete Minimum edge distance Required projecting area	S _{min} [mm]	55 85	105	75 according to	120 Annex B &	80	80

Splitting failure for minimum edge distance and spacing in dependence of the effective embedment depth h_{ef} .

For the calculation of minimum spacing and minimum edge distance of anchors in combination with different embedment depths and thicknesses of concrete members the following equation shall be fulfilled:

$$\textbf{A}_{sp,req} < \textbf{A}_{sp,t}$$


 $A_{sp,req}$ = required projecting area

A_{sp,t} = A_{sp,ef} = effective projecting area (according to Annex B 5)

fischer injection system FIS V Plus	
Intended use Minimum spacing and edge distance for anchor rods, reinforcing bars and fischer rebar anchor FRA	Annex B 4

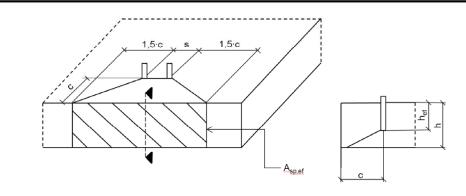
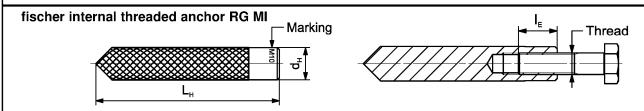


Table B5.1: Effective projecting area $A_{sp,t}$ with concrete member thickness $h > h_{ef} + 1,5 \cdot c$ and $h \ge h_{min}$

Single anchor		$A_{sp,t} = (3 \cdot c) \cdot (h_{ef} + 1, 5 \cdot c)$	[mm²]	with c ≥ c _{min}	
Group of anchors with	s > 3 · c	$A_{sp,t} = (6 \cdot c) \cdot (h_{ef} + 1, 5 \cdot c)$	[mm²]	WILIT C 2 Cmin	
Group of anchors with	s ≤ 3 · c	$A_{sp,t} = (3 \cdot c + s) \cdot (h_{ef} + 1, 5 \cdot c)$	[mm²]	with $c \ge c_{min}$ and $s \ge s_{min}$	

Table B5.2: Effektive projecting area $A_{sp,t}$ with concrete member thickness $h \le h_{ef} + 1,5 \cdot c$ and $h \ge h_{min}$

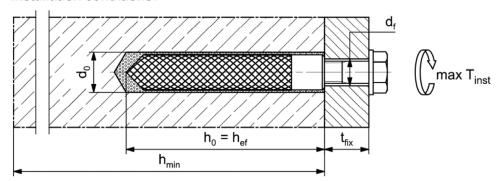
Single anchor		$A_{sp,t} = 3 \cdot c \cdot existing h$	[mm²]	with c ≥ c _{min}	
Group of anchors with	s > 3 · c	$A_{sp,t} = 6 \cdot c \cdot existing h$	[mm²]	WILLI C Z Cmin	
Group of anchors with	s ≤ 3 · c	$A_{sp,t} = (3 \cdot c + s) \cdot existing h$	[mm²]	with c ≥ c _{min} and s ≥ s _{min}	


Edge distance and axial spacing shall be rounded up to at least 5 mm

Figures not to scale

	ga. soe. te estale
fischer injection system FIS V Plus	
Intended use Minimum thickness of concrete member for anchor rods and reinforcing bars, minimum spacing and edge distance	Annex B 5

Table B6.1: Installation	on param	eters fo	or fischer i	internal th	readed and	hors RG N	11
Internal threaded anchors I	RG MI	Thread	M8	M10	M12	M16	M20
Diameter of anchor	$d_{nom} = d_H$		12	16	18	22	28
Nominal drill hole diameter	d ₀		14	18	20	24	32
Drill hole depth	h ₀] [$h_0 = h_{\text{ef}} = L_{\text{H}}$		
Effective embedment depth $(h_{ef} = L_H)$	h _{ef}		90	90	125	160	200
Minimum spacing and minimum edge distance	Smin = Cmin	[mm]	55	65	75	95	125
Diameter of clearance hole in the fixture	d _f		9	12	14	18	22
Minimum thickness of concrete member	h _{min}		120	125	165	205	260
Maximum screw-in depth	I _{E,max}] [18	23	26	35	45
Minimum screw-in depth	I _{E,min}		8	10	12	16	20
Maximum installation torque	max T _{inst}	[Nm]	10	20	40	80	120


Marking: Anchor size e. g.: M10

Stainless steel → additional **R**; e.g.: **M10 R**

High corrosion resistant steel → additional HCR; e.g.: M10 HCR

Retaining bolt or threaded rods (including nut and washer) must comply with the appropriate material and strength class of Annex A 6, Table A6.1

Installation conditions:

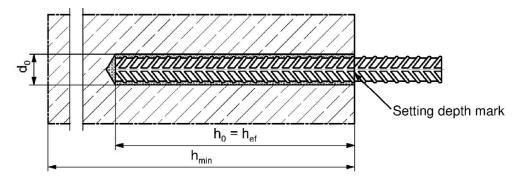
Figures not to scale

fischer injection system FIS V Plus

Intended use
Installation parameters internal threaded anchors RG MI


Annex B 6

Table B7.1: Installation	n param	eters f	or rein	forcing	g bars	1)				
Nominal diameter of the bar		ф	8 ²⁾	10 ²⁾	12 ²⁾	14	16	20	25	28
Nominal drill hole diameter	d₀		10 12	12 14	14 16	18	20	25	30	35
Drill hole depth	h_0					h ₀ =	= h _{ef}			
Effective embedment depth	$h_{\text{ef,min}}$		60	60	70	75	80	90	100	112
Effective embedment depth	h _{ef,max}		160	200	240	280	320	400	500	560
Minimum spacing and minimum edge distance	Smin = Cmin	[mm]	40	45	55	60	65	85	110	130
Minimum thickness of concrete member	h _{min}			_{ef} + 30 ≥ 100)			h∈	ef + 2d ₀		


¹⁾ minimum spacing and minimum edge distance see Annex B 4

Reinforcing bar

- The minimum value of related rib area f_{R,min} must fulfil the requirements of EN 1992-1-1:2004+AC:2010
- The rib height must be within the range: $0.05 \cdot \phi \le h_{rib} \le 0.07 \cdot \phi$ (ϕ = Nominal diameter of the bar, h_{rib} = rib height)

Installation conditions:

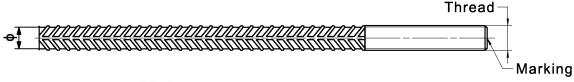
Figures not to scale

fischer injection system FIS V Plus

Intended use
Installation parameters reinforcing bars

Annex B 7

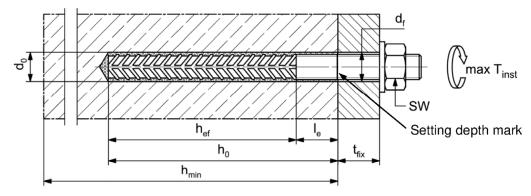
²⁾ Both drill hole diameters can be used



Rebar anchor FRA	-	Thread	M1:	2 ²⁾	M16	M20	M24
Nominal diameter of the bar	ф		12	2	16	20	25
Width across flats	SW		19	9	24	30	36
Nominal drill hole diameter	d ₀		14	16	20	25	30
Drill hole depth	h ₀		•	·	h _{ef}	+ l _e	
Effective embedment death	h _{ef,min}		70)	80	90	96
Effective embedment depth	h _{ef,max}		14	0	220	300	380
Distance concrete surface to welded joint	le	[]			10	00	
Minimum spacing and minimum edge distance	Smin = Cmin	[mm]	55	5	65	85	105
Diameter of pre-positioned anchorage clearance hole	≤ d _f		14	1	18	22	26
in the fixture push through anchorage	≤ d _f		18	3	22	26	32
Minimum thickness of concrete member	h _{min}		h ₀ + 30			h ₀ + 2d ₀	
Maximum installation torque	max T _{inst}	[Nm]	40)	60	120	150

¹⁾ minimum spacing and minimum edge distance see Annex B 5

²⁾ Both drill hole diameters can be used



Marking frontal e.g:

FRA (for stainless steel);

FRA HCR (for high corrosion resistant steel)

Installation conditions:

Figures not to scale

Intended use
Installation parameters rebar anchor FRA

Annex B 8

Table B9.1:	Para	ımete	rs of th	ne cle	aning	brus	h BS	(steel	brush	with	steel b	oristles	s)	
The size of the cleaning brush refers to the drill hole diameter														
Nominal drill hole diameter	d₀	[mm]	8	10	12	14	16	18	20	24	25	28	30	35
Steel brush diameter	dь	[mm]	9	11	14	16	2	0	25	26	27	30	4	0

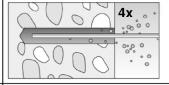
Table B9.2Maximum processing time of the mortar and minimum curing time
(During the curing time of the mortar the concrete temperature may not fall below the listed minimum temperature)

Temperature at	Maxin	num processino t _{work}	g time	Min	imum curing tin t _{cure}	ne ¹⁾
anchoring base [°C]	FIS VW Plus High Speed	FIS V Plus	FIS VS Plus Low Speed	FIS VW Plus High Speed	FIS V Plus	FIS VS Plus Low Speed
-10 to -5 ²⁾	-	-	-	12 h	-	-
> -5 to 0 ²⁾	5 min	-	-	3 h	24 h	-
> 0 to 5 ²	5 min	13 min	-	3 h	3 h	6 h
> 5 to 10	3 min	9 min	20 min	50 min	90 min	3 h
> 10 to 20	1 min	5 min	10 min	30 min	60 min	2 h
> 20 to 30	-	4 min	6 min	-	45 min	60 min
> 30 to 40	-	2 min	4 min	-	35 min	30 min

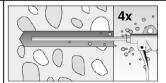
¹⁾ In wet concrete or water filled holes the curing times must be doubled

fischer injection system FIS V Plus	
Intended use Cleaning brush (steel brush) Processing time and curing time	Annex B 9

²⁾ Minimal cartridge temperature +5°C

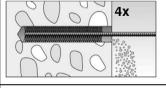

Installation instructions part 1

Drilling and cleaning the hole (hammer drilling with standard drill bit)

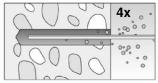

1

Drill the hole. Nominal drill hole diameter d_0 and drill hole depth h_0 see tables B3.1, B6.1, B7.1, B8.1

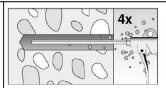
2



Clean the drill hole: For $h_{ef} \le 12d$ and $d_0 < 18$ mm blow out the hole four times by hand


For $h_{ef} > 12d$ and / or $d_0 \ge 18$ mm blow out the hole four times with oil-free compressed air $(p \ge 6 \text{ bar})$

3



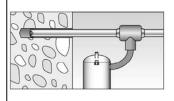
Brush the drill hole four times. For drill hole diameter ≥ 30 mm use a power drill. For deep holes use an extension. Corresponding brushes see **table B9.1**

4

Clean the drill hole: For $h_{ef} \le 12d$ and $d_0 < 18$ mm blow out the hole four times by hand

For $h_{ef} > 12d$ and / or $d_0 \ge 18$ mm blow out the hole four times with oil-free compressed air $(p \ge 6 \text{ bar})$

Go to step 5


Drilling and cleaning the hole (hammer drilling with hollow drill bit)

1

Check a suitable hollow drill (see **table B1.1**) for correct operation of the dust extraction

2

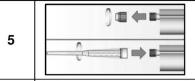
Use a suitable dust extraction system, e.g. fischer FVC 35 M or a comparable dust extraction system with equivalent performance data

Drill the hole with hollow drill bit. The dust extraction system has to extract the drill dust nonstop during the drilling process and must be adjusted to maximum power. Nominal drill hole diameter \mathbf{d}_0 and drill hole depth \mathbf{h}_0 see tables B3.1, B6.1, B7.1, B8.1

Go to step 5

fischer injection system FIS V Plus

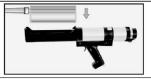
Intended use


Installation instructions part 1

Annex B 10

Installation instructions part 2

Preparing the cartridge



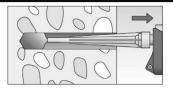
Remove the sealing cap

Screw on the static mixer (the spiral in the static mixer must be clearly visible)

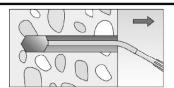
6

Place the cartridge into the dispenser

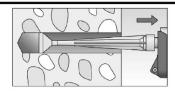
7



Extrude approximately 10 cm of material out until the resin is evenly grey in colour. Do not use mortar that is not uniformly grey


Go to step 8

Injection of the mortar


8

Fill approximately 2/3 of the drill hole with mortar. Always begin from the bottom of the hole and avoid bubbles

For drill hole depth ≥ 150 mm use an extension tube

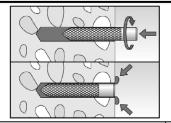
For overhead installation, deep holes ($h_0 > 250$ mm) or drill hole diameter ($d_0 \ge 40$ mm) use an injection adapter

Go to step 9

fischer injection system FIS V Plus

Intended use

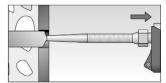
Installation instructions part 2


Annex B 11

Installation instructions part 3

Installation of anchor rods or fischer internal threaded anchors RG MI

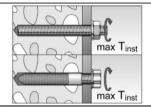
9



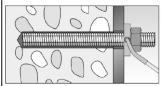
Only use clean and oil-free metal parts. Mark the setting depth of the metal part. Push the anchor rod or fischer internal threaded RG MI anchor down to the bottom of the hole, turning it slightly while doing so.

After inserting the metal parts, excess mortar must be emerged around the anchor element.

For overhead installations support the metal part with wedges (e.g. fischer centering wedges) or fischer overhead clips.

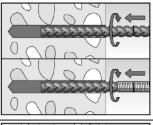

For push through installation fill the annular gap with mortar

10

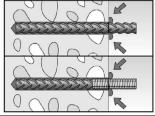

Wait for the specified curing time t_{cure} see table B9.2

11

Mounting the fixture max T_{inst} see tables B3.1 and B6.1


Option

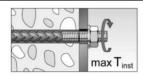
After the minimum curing time is reached, the gap between metal part and fixture (annular clearance) may be filled with mortar via the fischer filling disc. Compressive strength ≥ 50 N/mm² (e.g. fischer injection mortars FIS HB, FIS SB, FIS V, FIS V Plus, FIS EM Plus).


ATTENTION: Using fischer filling disc reduces t_{fix} (usable length of the anchor)

Installation reinforcing bars and fischer rebar anchor FRA

Only use clean and oil-free reinforcing bars or fischer FRA. Mark the setting depth. Turn while using force to push the reinforcement bar or the fischer FRA into the filled hole up to the setting depth mark.

9


When the setting depth mark is reached, excess mortar must be emerged from the mouth of the drill hole.

10

Wait for the specified curing time t_{cure} see **table B9.2**

11

Mounting the fixture max T_{inst} see **table B8.1**

fischer injection system FIS V Plus

Intended use

Installation instructions part 3

Annex B 12

		ous a	10 30		ai u ti	reade	u rous)		_			_
	nor rod / standard threa				М6	M8	M10	M12	M16	M20	M24	M27	M30
Bear	ing capacity under ten	sion loa	d, ste	eel fai	ilure 3)								
O S			4.8		8	15(13)	23(21)	33	63	98	141	184	224
Characteristic esistance N _{RK,s}	Steel zinc plated	>	5.8		10	19(17)	29(27)	43	79	123	177	230	281
Character resistance		Property class	8.8 50	[kN]	16	29(27)	47(43)	68	126	196	282	368	449
arac stan	Stainless steel R and	g	50	[[KIN]	10	19	29	43	79	123	177	230	281
Sis	high corrosion	"	_70		14	26	41	59	110	172	247	322	393
	resistant steel HCR		80		16	30	47	68	126	196	282	368	449
Parti	al factors 1)												
		•	4.8						1,50				
ğ	Steel zinc plated	 	5.8						1,50				
.lfac ™s,n		ropert	8.8	r 1					1,50				
	Stainless steel R and	Property class	50	[-]					2,86				
Par	high corrosion		70					1,	50 ²⁾ / 1,	87			
	resistant steel HCR		80						1,60				
Bear	ing capacity under she	ar load,	stee	l failu	re 3)								
	out lever arm	<u> </u>											
S			4.8		4	9(8)	14(13)	20	38	59	85	110	135
ristic V ^o Rk,s	Steel zinc plated		5.8		6	11(10)	17(16)	25	47	74	106	138	168
		Property class			8	15(13)	23(21)	34	63	98	141	184	225
Characte resistance	Stainless steel R and	rop	8.8 50	[kN]	5	9	15	21	39	61	89	115	141
Characteristic ssistance Vo _{RK} ,	high corrosion		70		7	13	20	30	55	86	124	161	197
ق ک	resistant steel HCR		80		8	15	23	34	63	98	141	184	225
Ducti	lity factor		k ₇	[-]		•			1,0	•			
with	lever arm												
			4.8		6	15(13)	30(27)	52	133	259	448	665	899
ristic M ⁰ Rk,s	Steel zinc plated		5.8		7		37(33)	65	166	324	560	833	1123
	·	Property class			12		60(53)	105	266	519	896	1333	1797
Characte resistance	Stainless steel R and	roper class	8.8 50	[Nm]	7	19	37	65	166	324	560	833	1123
Characte ssistance	high corrosion	₫.	70		10	26	52	92	232	454	784	1167	1573
၁ မွ	resistant steel HCR		80		12	30	60	105	266	519	896	1333	1797
 Parti	al factors 1)	ı	-	1	I		ı			·			
			4.8						1,25				
Ď	Steel zinc plated		5.8						1,25				
il fact _{Ms,} v	•	erty is	5.8 8.8	1,25									
<u></u>	Stainless steel R and	Property class	50	[-]					2,38				
Partial factor ץ™s.v	high corrosion	<u> </u>	은 5 <u>50</u> 11			2,36 1,25 ²) / 1,56							
ட	resistant steel HCR	İ		1	1,33								

¹⁾ In absence of other national regulations

fischer injection system FIS V Plus

Performances

Characteristic values for steel failure under tension / shear load of fischer anchor rods and standard threaded rods

Annex C₁

²⁾ Only admissible for high corrosion resist. steel HCR, with f_{yk} / $f_{uk} \ge 0.8$ and $A_5 > 12$ % (e.g. fischer anchor rods)

³⁾ Values in brackets are valid for undersized threaded rods with smaller stress area A_s for hot dip galvanised standard threaded rods according to EN ISO 10684:2004+AC:2009

Table C2.1:					or steel fai ed anchors		tension / sl	hear load o	f		
fischer internal	thread	ed anchors	RG M		M8	M10	M12	M16	M20		
Bearing capaci	ty unde	r tension l	oad, ste	eel fai	lure	!		.			
		Property	5.8		19	29	43	79	123		
Charact. resistance with	$N_{Rk,s}$	class	8.8	[kN]	29	47	68	108	179		
screw	INRk,s	Property	R	[KIN]	26	41	59	110	172		
		class 70	HCR		26	41	59	110	172		
Partial factors ¹⁾											
		Property	5.8				1,50				
Partial factors	2/14 11	class	8.8	[-]			1,50				
i artiar factors	γMs,N	Property	R	[-]			1,87				
		class 70	HCR				1,87				
Bearing capaci	ty unde	r shear loa	ıd, stee	l failu	re						
Without lever a	rm										
01 .		Property	5.8		9,2	14,5	21,1	39,2	62,0		
Charact. resistance with	$V^0_{Rk,s}$	class	8.8	[kN]	14,6	23,2	33,7	54,0	90,0		
screw	V HK,S	Property	R	[KIN]	12,8	20,3	29,5	54,8	86,0		
		class 70	HCR		12,8	20,3	29,5	54,8	86,0		
Ductility factor			k ₇	[-]			1,0				
With lever arm											
O		Property	5.8		20	39	68	173	337		
Charact. resistance with	M ⁰ Rk,s	class	8.8	[Nm]	30	60	105	266	519		
screw	IVI HK,S	Property	R	ן ניייין	26	52	92	232	454		
		class 70	HCR		26	52	92	232	454		
Partial factors ¹⁾											
		Property	5.8				1,25				
Partial factors	\/\n_\/	class	8.8	[_]			1,25				
i artial lactors	γMs,V	Property	R	[-]	1,56						
		class 70	HCR				1,56				

1) In	aheanca	of other	national	regulations
'7 111	absence	or orner	панопаі	requiations

fischer injection system FIS V Plus	
Performances Characteristic values for steel failure under tension / shear load of fischer internal threaded anchor RG MI	Annex C 2

Table C3.1: Characte reinforcir	ristic valu ng bars	es fo	or stee	el failur	re unde	r tensi	on / she	ear load	d of	
Nominal diameter of the bar		ф	8	10	12	14	16	20	25	28
Bearing capacity under tens	ion load, ste	el fai	lure							
Characteristic resistance	N _{Rk,s}	[kN]				As ·	f uk ¹⁾			
Bearing capacity under shea	r load, stee	l failu	re							
Without lever arm										
Characteristic resistance	$V^0_{Rk,s}$	[kN]				0,5 · A	s · f _{uk} 1)			
Ductility factor	k ₇	[-]				1	,0			
With lever arm		•								
Characteristic resistance	M ⁰ Rk,s	[Nm]				1,2 · V	/ el ⋅ f uk¹)			

¹⁾ fuk or fyk respectively must be taken from the specifications of the reinforcing bar

Table C3.2: Characteristic values for steel failure under tension / shear load of fischer rebar anchors FRA

fischer rebar anchor FRA			M12	M16	M20	M24
Bearing capacity under tens	ion load, st	eel fail	ure			
Characteristic resistance	N _{Rk,s}	[kN]	63	111	173	270
Partial factor ¹⁾						
Partial factor	γMs,N	[-]		1	,4	
Bearing capacity under shea	ar load, stee	l failui	´e			
Without lever arm						
Characteristic resistance	V^0 Rk,s	[kN]	30	55	86	124
Ductility factor	k ₇	[-]		1	,0	
With lever arm						
Characteristic resistance	M ⁰ Rk,s	[Nm]	92	233	454	785
Partial factor ¹⁾						
Partial factor	γMs,V	[-]		1,	,56	

¹⁾ In absence of other national regulations

fischer injection system FIS V Plus

Performances
Characteristic values for steel failure under tension / shear load of reinforcing bars and fischer rebar anchors FRA

Annex C 3

Size								All siz	96					
Tension load								All SIZ	2 8					
Installation facto	nr.	24:	[-]		0	ee anne	2V C 5	to C 11	2 and	C 1	7 to C	1 2		
	compressive stre	γinst		roto > /		ee anne	ex C 5	10 0 12	2 and 1	0 17	/ 10 C	10		
ractors for the	C25/30	ngth o	Conc	rete > t	G20/25			1 05						
_				1,05										
	C30/37 C35/45			1,10										
Increasing _ factor for $ au_{Rk}$	C40/50	Ψ_{c}	[-]					1,15						
TACIOI TOT THE	C40/50 C45/55							1,19 1,22						
_	C50/60							1,22						
Splitting failure								1,20						
Splitting landie	h / h _{ef} ≥ 2,0							1,0 h						
Edge -	$2.0 > h / h_{ef} > 1.3$	Car an					4 6	6 h _{ef} - 1						
distance –	$h / h_{ef} \le 1,3$	Ocr,sp	[mm]				7,0	2,26 h						
Spacing	117 Her = 1,0	S _{cr,sp}	1 1					2 C _{cr,s}						
Concrete failur	 re	Ocr,sp						_ Ocr,s	Ψ.					
Uncracked cond		k _{ucr,N}						11,0						
Cracked concre		K _{cr,N}	 [-]					7,7						
Edge distance		Ccr,N						1,5 h						
Spacing		Scr,N	[mm]	2 C _{Cr} ,N										
· · · · · · · · · · · · · · · · · · ·	stained tension loa								•					
Temperature ra		-	[-]		50 °C	C / 80 °	<u> </u>			72	°C / 1	20 °C		
Factor	ngo	$\Psi^0_{ m sus}$	[-]			0,76					0,78			
Shear load		1 Sus	LJ			0,70					0,70	,		
Installation factor	nr	26:	[-]					1,0						
Concrete pry-o		γinst	L-J	1,0										
Factor for pry-or		k ₈	[-]	2,0										
Concrete edge		10	LJ					2,0						
						< 24		/h . 1 () ~ \					
Effective length shear loading		lf	[mm]		for d _{nom}						mm)			
Calculation dia	meters				ı							1		
Size				M6	M8	M10	M12	M16	M2	0	M24	M27	M3	
fischer anchor re standard thread		d _{nom}		6	8	10	12	16	20		24	27	30	
fischer internal threade	d anchors RG MI	d _{nom}	[mm]	_1)	12	16	18	22	28	3	_1)	_1)	_1	
fischer rebar an	chor FRA	d_{nom}		_1)	_1)	_1)	12	16	20		25	_1)	_1	
Size (nominal d	iameter of the bar)		ф	8	10	12	1	4	16	2	20	25	28	
Reinforcing bar		d _{nom}	[mm]	8	10	12	1	4	16	2	20	25	28	
1) Size of anch	or type not part of t	ne ass	essmer	nt										
fischer inject	ion system FIS	√ Plus	3											
Performances Characteristic	values for concrete	failure	under t	ension	/ shear	load					An	nex C	4	

anchor r uncrack									l holes	,	
Anchor rod / standard threa	ded rod		M6	M8	M10	M12	M16	M20	M24	M27	M30
Combined pullout and cond	rete con	e failure									
Calculation diameter	d	[mm]	6	8	10	12	16	20	24	27	30
Uncracked concrete						_					
Characteristic bond resistar	nce in ui	ncracked	concre	ete C20	/25						
Hammer-drilling with standard	drill bit o	or hollow o	drill bit (vet con	<u>crete)</u>		I	I	I	
Tem- perature I: 50 °C / 80 °C		 [N/mm²]	9,0	16,0	16,0	15,0	14,0	12,0	11,0	10,0	9,0
range II: 72 °C / 120 °C	τ _{Rk,ucr}	[14/11111-] 	6,5	15,0	14,0	13,0	12,0	11,0	9,0	8,0	8,0
Hammer-drilling with standard	drill bit	or hollow	drill bit (water fi	lled hol	<u>'</u> e)					
Tem- I: 50 °C / 80 °C			_1)	_1)	_1)	9,5	8,5	8,0	7,5	7,0	7,0
perature range II: 72 °C / 120 °C	$ au_{Rk,ucr}$	[N/mm ²]	_1)	_1)	_1)	7,5	7,0	6,5	6,0	6,0	6,0
Installation factors							,,0	0,0	0,0	0,0	
Dry or wet concrete							1,0				
Water filled hole	γinst	[-]	_1)	_1)	_1)		-,-	1	,2		
Cracked concrete	-										
Characteristic bond resistar	nce in cr	acked co	ncrete	C20/25							
Hammer-drilling with standard	drill bit	or hollow	drill bit (dry or v	vet con	crete)					
Tem- I: 50 °C / 80 °C			_1)	5,5	6,0	6,5	6,0	5,5	5,0	5,0	4,5
perature II: 72 °C / 120 °C	τ _{Rk,cr}	[N/mm ²]	_1)	4,5	5,0	6,0	5,5	5,0	4,5	4,0	4,0
Hammer-drilling with standard	drill bit o	or hollow (drill bit (·		,	,	,	,	
Tem- I: 50 °C / 80 °C			_1)	_1)	_1)	5,0	5,0	4,5	4,0	3,5	3,5
perature	$ au_{Rk,cr}$	[N/mm ²]	_1)	_1)	_1)	4,0	4,0	4,0	3,5	3,0	3,0
range II: 72 °C / 120 °C Installation factors			/	/	/	4,0	4,0	4,0	3,3	3,0	3,0
Dry or wet concrete							1,0				
Water filled hole	γinst	[-]	_1)	_1)	_1)		1,0	1	,2		
1) No performance assessed								'	, <u> </u>		
fischer injection system Performances	FIS V F	Plus							An	nex C	5

Z87572.20 8.06.01-603/20

Characteristic values for combined pull-out and concrete failure for fischer anchor rod and standard threaded rods; working life 50 years

Table C6.1: Characte anchor i uncrack	ods and	d stand	ard th	reade	d rods	s in ha	mmer	drilled			ner
Anchor rod / standard threa	ded rod		М6	M8	M10	M12	M16	M20	M24	M27	M30
Combined pullout and cond	rete con	e failure									
Calculation diameter	d	[mm]	6	8	10	12	16	20	24	27	30
Uncracked concrete											
Characteristic bond resista	nce in un	cracked	concre	te C20	25						
Hammer-drilling with standard	d drill bit o	r hollow	drill bit (dry or v	vet cond	crete)					
Tem- I: 50 °C / 80 °C		[N]/ma ma 21	_1)	16,0	16,0	15,0	14,0	12,0	11,0	10,0	9,0
perature range II: 72 °C / 120 °C	τ _{Rk,100,ucr}	[IN/MIM2] 	_1)	15,0	14,0	13,0	12,0	11,0	9,0	8,0	8,0
Hammer-drilling with standard	d drill bit o	r hollow o	drill bit (water fi	lled hol	<u>e)</u>					
Tem- I: 50 °C / 80 °C		_	_1)	_1)	_1)	9,5	8,5	8,0	7,5	7,0	7,0
perature range II: 72 °C / 120 °C	$ au_{ ext{Rk,100,ucr}}$	[N/mm²] 	_1)	_1)	_1)	7,5	7,0	6,5	6,0	6,0	6,0
Installation factors				•							
Dry or wet concrete		[-]					1,0				
Water filled hole	γinst	[-]	_1)	_1)	_1)			1,	,2		
Cracked concrete											
Characteristic bond resista	nce in cra	acked co	ncrete	C20/25							
Hammer-drilling with standard	d drill bit o	r hollow o	drill bit (dry or v	vet cond	crete)					
Tem- I: 50 °C / 80 °C	_	[N1/mm2]	_1)	5,0	5,5	5,5	5,5	5,5	5,0	5,0	4,5
perature range II: 72 °C / 120 °C	τ _{Rk,100,cr}	[N/mm ²]	_1)	4,5	5,0	5,0	5,0	5,0	4,0	4,0	4,0
Hammer-drilling with standard	d drill bit o	r hollow o	drill bit (water fi	lled hole	<u>e)</u>					
Tem- I: 50 °C / 80 °C		[N.1/27	_1)	_1)	_1)	4,5	4,5	4,5	4,0	3,5	3,5
perature range II: 72 °C / 120 °C	τ Rk,100,cr	[N/mm ²]	_1)	_1)	_1)	4,0	4,0	4,0	3,5	3,0	3,0
Installation factors											
Dry or wet concrete	200	[-]					1,0				
Water filled hole	γinst	[-]	_1)	_1)	_1)			1,	,2		

" No	performance	assessed
------	-------------	----------

fischer injection system FIS V Plus

Performances
Characteristic values for combined pull-out and concrete failure for fischer anchor rod and standard threaded rods; working life 100 years

Annex C 6

Table C7.1:	Characteristic values for combined pull-out and concrete failure for fischer
	internal threaded anchors RG MI in hammer drilled holes; uncracked
	concrete; working life 50 years

	•	•	-				
Internal threaded anchor I	RG MI		M8	M10	M12	M16	M20
Combined pullout and cor	ncrete cor	ne failure					
Calculation diameter	d	[mm]	12	16	18	22	28
Uncracked concrete							
Characteristic bond resist	ance in u	ncracked	concrete C2	20/25			
Hammer-drilling with standa	rd drill bit	or hollow o	drill bit (dry o	r wet concrete	<u>e)</u>		
Tem- perature I: 50 °C / 80 °C		[N/mm ²]	10,5	10,0	9,5	9,0	8,5
range II: 72 °C / 120 °C	T _{Rk,ucr}	[[N/11111-]	9,0	8,0	8,0	7,5	7,0
Hammer-drilling with standa	<u>ırd drill bit</u>	or hollow o	drill bit (water	filled hole)			
Tem- I: 50 °C / 80 °C		[N/mm ²]	10,0	9,0	9,0	8,5	8,0
range II: 72 °C / 120 °C	T _{Rk,ucr}	[[N/11111-]	7,5	6,5	6,5	6,0	6,0
Installation factors		•					
Dry or wet concrete		[]			1,0		
Water filled hole	γinst	[-]			1,2		

fischer injection system FIS V Plus

Performances

Charactersitic values for combined pull-out and concrete failure for fischer internal threaded anchors RG MI; working life 50 years

Annex C7

reinforcir	reinforcing bars in hammer drilled holes; uncracked or cracked concrete; working life 50 years												
Nominal diameter of the bar		ф	8	10	12	14	16	20	25	28			
Combined pullout and concrete cone failure													
Calculation diameter	d	[mm]	8	10	12	14	16	20	25	28			
Uncracked concrete													
Characteristic bond resistance in uncracked concrete C20/25													
Hammer-drilling with standard drill bit or hollow drill bit (dry or wet concrete)													
Tem- I: 50 °C / 80 °C	·· I. 30 0/00 0												
range II: 72 °C / 120 °C	$ au_{Rk,ucr}$	[N/mm ²] -	9,5	9,5	9,0	8,5	8,5	8,0	7,5	7,0			
Installation factor													
Dry or wet concrete	γinst	[-]				1,	,0						
Cracked concrete													
Characteristic bond resistan	ce in cr	acked co	ncrete (C20/25									
Hammer-drilling with standard	drill bit	or hollow c	<u>rill bit (c</u>	dry or we	t concre	<u>te)</u>							
Tem- I: 50 °C / 80 °C	_	[NI/mm2]	_1)	3,0	5,0	5,0	5,0	4,5	4,0	4,0			
perature range II: 72 °C / 120 °C										3,5			
Installation factor													
Dry or wet concrete γ_{inst} [-] 1,0													

¹⁾ No performance assessed

fischer injection system FIS V Plus

Performances
Characteristic values for combined pull-out and concrete failure for reinforcing bars;
working life 50 years

Annex C 8

Table C9.1:	Characteristic values for combined pull-out and concrete failure for fischer
	rebar anchors FRA in hammer drilled holes; uncracked or cracked
	concrete; working life 50 years

	, work	ing inc	oo years			
fischer rebar anchor FRA			M12	M16	M20	M24
Combined pullout and conc	rete cor	e failure				-
Calculation diameter	d	[mm]	12	16	20	25
Uncracked concrete						
Characteristic bond resistan	ice in ui	ncracked	concrete C20/2	5		
Hammer-drilling with standard	drill bit	or hollow	drill bit (dry or we	t concrete)		
Tem- I: 50 °C / 80 °C	_	[N]/mm21	11,0	10,0	9,5	9,5
range II: 72 °C / 120 °C	τ _{Rk,ucr}	[N/mm ²]	9,0	8,5	8,0	7,5
Installation factors						
Dry or wet concrete	γinst	[-]		1	,0	
Cracked concrete						
Characteristic bond resistan	ice in ci	acked co	ncrete C20/25			
Hammer-drilling with standard	drill bit	or hollow	drill bit (dry or we	t concrete)		
Tem- I: 50 °C / 80 °C		[N]/ma ma 21	5,0	5,0	4,5	4,0
range II: 72 °C / 120 °C	τ _{Rk,cr}	[N/mm ²]	4,5	4,5	4,0	3,5
Installation factors						
Dry or wet concrete	γinst	[-]		1	,0	

fischer injection system FIS V Plus

Performances

Characteristic values for combined pull-out and concrete failure for fischer rebar anchors FRA; working life 50 years

Annex C 9

Table (Table C10.1: Displacements for anchor rods												
Anchor	rod	М6	М8	M10	M12	M16	M20	M24	M27	M30			
Displacement-Factors for tension load ¹⁾													
Uncracked concrete; Temperature range I, II													
δ _{N0-Factor}	[mm/(N/mm²)]	0,09	0,09	0,09	0,10	0,10	0,10	0,10	0,11	0,12			
δN∞-Factor	[[::::::/(:::::::::/)]	0,10	0,10	0,10	0,12	0,12	0,12	0,13	0,13	0,14			
Cracked	d concrete; Ter	mperature	e range I,	II									
$\delta_{\text{N0-Factor}}$	[mm/(N/mm²)]	_3)	0,12	0,12	0,12	0,13	0,13	0,13	0,14	0,15			
δ _{N0} -Factor	[[[]]]]	_3)	0,25	0,27	0,30	0,30	0,30	0,35	0,35	0,40			
Displace	ement-Factors	for shea	r load ²⁾	_	-	-				-			
Uncrack	ked or cracked	concrete	; Tempera	ature rang	je I, II								
δv0-Factor	[mm/kN]	0,11	0,11	0,11	0,10	0,10	0,09	0,09	0,08	0,07			
δ∨∞-Factor	[mm/kN]	0,12	0,12	0,12	0,11	0,11	0,10	0,10	0,09	0,09			

¹⁾ Calculation of effective displacement:

 $\delta_{\text{N0}} = \delta_{\text{N0-Factor}} \cdot \tau_{\text{Ed}}$

 $\delta_{N\infty} = \delta_{N\infty\text{-Factor}} \cdot \tau_{\text{Ed}}$

(τ_{Ed} : Design value of the applied tensile stress)

 $\delta_{V0} = \delta_{V0\text{-Factor}} \cdot V_{\text{Ed}}$

 $\delta_{V^\infty} = \delta_{V^\infty\text{-Factor}} \cdot V_{\text{Ed}}$

(V_{Ed}: Design value of the applied shear force)

Table C10.2: Displacements for fischer internal threaded anchors RG MI

1	ternal threaded M8		M10	M12	M16	M20					
Displace	Displacement-Factors for tension load		1)								
Uncrack	Uncracked concrete; Temperature range I, II										
δ _{N0-Factor}	[mm/(N/mm²)]	0,10	0,11	0,12	0,13	0,14					
δ _{N∞} -Factor	[[111111/(1 4 /111111-)] [0,13	0,14 0,15		0,16	0,18					
Displace	ement-Factors	for shear load ²⁾									
Uncrack	red concrete;	Temperature ranç	je I, II								
δvo-Factor	[mm/kN]	0,12	0,12	0,12	0,12	0,12					
δv∞-Factor	[mm/kN]	0,14	0,14	0,14	0,14	0,14					

¹⁾ Calculation of effective displacement:

 $\delta_{\text{N0}} = \delta_{\text{N0-Factor}} \cdot \tau_{\text{Ed}}$

 $\delta_{\text{N}\infty} = \delta_{\text{N}\infty\text{-Factor}} \cdot \tau_{\text{Ed}}$

 $(\tau_{Ed}$: Design value of the applied tensile stress)

 $\delta v_0 = \delta v_{0\text{-Factor}} \cdot V_{Ed}$

 $\delta_{\text{V}\infty} = \delta_{\text{V}\infty\text{-Factor}} \cdot V_{\text{Ed}}$

(V_{Ed}: Design value of the applied shear force)

fischer injection system FIS V Plus

Performances

Displacements for anchor rods and fischer internal threaded anchors RG MI

Annex C 10

³⁾ No performance assessed

²⁾ Calculation of effective displacement:

²⁾ Calculation of effective displacement:

Table (Γable C11.1: Displacements for reinforcing bars													
Nomina of the b	l diameter ar	8	10	12	14	16	20	25	28					
Displace	ement-Factors	for tensio	n load ¹⁾											
Uncrack	Uncracked concrete; Temperature range I, II													
δ _{N0} -Factor	[mm/(N/mm²)]	0,09	0,09	0,10	0,10	0,10	0,10	0,10	0,11					
δN∞-Factor	[mm/(N/mm²)] 	0,10	0,10	0,12	0,12	0,12	0,12	0,13	0,13					
Cracked	concrete; Ter	mperature	range I, II											
δ _{N0-Factor}	[mm/(N/mm²)]	_3)	0,12	0,13	0,13	0,13	0,13	0,13	0,14					
δ _{N∞-Factor}		_3)	0,27	0,30	0,30	0,30	0,30	0,35	0,37					
Displace	ement-Factors	for shear	load ²⁾											
Uncrack	ed or cracked	concrete;	Temperatu	ıre range I,	II									
δv0-Factor	[mm/lcN]	0,11	0,11	0,10	0,10	0,10	0,09	0,09	0,08					
δv∞-Factor	[mm/kN]	0,12	0,12	0,11	0,11	0,11	0,10	0,10	0,09					

¹⁾ Calculation of effective displacement:

²⁾ Calculation of effective displacement:

 $\delta_{\text{N0}} = \delta_{\text{N0-Factor}} \cdot \tau_{\text{Ed}}$

 $\delta_{\text{N}\infty} = \delta_{\text{N}\infty\text{-Factor}} \cdot \tau_{\text{Ed}}$

(τ_{Ed} : Design value of the applied tensile stress)

 $\delta_{V\infty} = \delta_{V\infty\text{-Factor}} \cdot V_{Ed}$

(V_{Ed}: Design value of the applied shear force)

Displacements for fischer rebar anchors FRA Table C11.2:

fischer FRA	rebar anchor	M12	M16	M20	M24					
Displacement-Factors for tension load ¹⁾										
Uncracked concrete; Temperature range I, II										
$\delta_{\text{N0-Factor}}$	[mm/(N/mm²)]	0,10	0,10	0,10	0,10					
δ _{N∞-Factor}		0,12	0,12	0,12	0,13					
Cracked	Cracked concrete; Temperature range I, II									
δ _{N0} -Factor	[mm/(N/mm²)]	0,12	0,13	0,13	0,13					
δN∞-Factor	[[[[[[]]	0,30	0,30	0,30	0,35					
Displacement-Factors for shear load ²⁾										
Uncracked or cracked concrete; Temperature range I, II										
δvo-Factor	[100 to /lcN]	0,10	0,10	0,09	0,09					
δv∞-Factor	[mm/kN]	0,11	0,11	0,10	0,10					

1) Calculation of effective displacement:

 $\delta_{\text{N0}} = \delta_{\text{N0-Factor}} \cdot \tau_{\text{Ed}}$

 $\delta_{\text{N}\infty} = \delta_{\text{N}\infty\text{-Factor}} \cdot \tau_{\text{Ed}}$

(τ_{Ed} : Design value of the applied tensile stress)

2) Calculation of effective displacement:

 $\delta_{V0} = \delta_{V0\text{-Factor}} \cdot V_{Ed}$

 $\delta_{V\infty} = \delta_{V\infty\text{-Factor}} \cdot V_{Ed}$

(V_{Ed}: Design value of the applied shear force)

fischer injection system FIS V Plus

Performances

Displacements for reinforcing bars and fischer rebar anchors FRA

Annex C 11

 $[\]delta_{V0} = \delta_{V0\text{-Factor}} \cdot V_{Ed}$

³⁾ No performance assessed

Table C12.1: Characteristic values for steel failure under tension / shear load of fischer anchor rods and standard threaded rods under seismic action performance category C1 or C2

	ponomai		<u> </u>	-, -				1			
	rod / standard thread				M10	M12	M16	M20	M24	M27	M30
Bearing capacity under tension load, steel failure ¹⁾											
fischer	anchor rods and stan	dard th	reac	ded ro	ds, perf	ormance	category	C1 ²⁾			
S	Ctool zine plated		5.8	-	29(27)	43	79	123	177	230	281
rristi nce S1	Steel zinc plated	ړ ⊊	8.8		47(43)	68	126	196	282	368	449
naracteristi esistance N _{Rk,s,C1}	Stainless steel R and	Property class	50	[kN]	29	43	79	123	177	230	281
Characteristic resistance NRk,s,C1	ingii oon oolon	<u> </u>	70		41	59	110	172	247	322	393
O	resistant steel HCR		80		47	68	126	196	282	368	449
fischer	anchor rods, perform	ance c	ateg	ory C	2 ²⁾						
c	Ctool =ino plotod		5.8		_4)	39	72	108	_4)	_4)	_4)
eristi nce .c2	Steel zinc plated	s if	8.8		_4)	61	116	173	_4)	_4)	_4)
iaracterist reistance N _{Rk,s,C2}	Stainless steel R and	Property class	50	[kN]	_4)	39	72	108	_4)	_4)	_4)
Characteristic reistance N _{Rk,s,C2}	high corrosion	٩ ۾	70		_4)	53	101	152	_4)	_4)	_4)
S	resistant steel HCR		80		_4)	61	116	173	_4)	_4)	_4)
Bearing	capacity under shea	r load,	stee	l failu	re withou	ut lever a	rm ¹⁾				
fischer	anchor rods, perform	ance c	ateg	ory C	1 ²⁾						
c	Steel zinc plated		5.8		17(16)	25	47	74	106	138	168
eristi nce cı		Property class	8.8		23(21)	34	63	98	141	184	225
naracteristi esistance V _{Rk,s, C1}	Stainless steel R and		50		15	21	39	61	89	115	141
Characteristic resistance VRK,S, C1	high corrosion		70		20	30	55	86	124	161	197
O	resistant steel HCR		80		23	34	63	98	141	184	225
Standa	rd threaded rods, perf	orman	се са	atego	ry C1 ²⁾			•			
ic	Stool zing plated		5.8		12(11)	17	33	52	74	97	118
Characteristic resistance V _{Rk,s, C1}	Steel zinc plated	s if	8.8		16(14)	24	44	69	99	129	158
racte sistar 'Rk,s, '	Stainless steel R and	Property class	50	[kN]	11	15	27	43	62	81	99
hara resi V _F	high corrosion	ا جِ	70		14	21	39	60	87	113	138
	resistant steel HCR		80		16	24	44	69	99	129	158
fischer	anchor rods, perform	ance c		ory C			Т	ı		Г	Г
ottic e	Steel zinc plated		5.8		_4)	14	27	43	_4)	_4)	_4)
naracteristi esistance V _{Rk,s, C2}	•	Property class	8.8		_4)	22	44	69	_4)	_4)	_4)
ıaracte esistar V _{Rk,s, (}	Stainless steel R and	ope clas	50		_4)	14	27	43	_4)	_4)	_4)
Characteristic resistance V _{Rk,s, C2}	•	ا مَا	70		_4)	20	39	60	_4)	_4)	_4)
	resistant steel HCR		80		_4)	22	44	69	_4)	_4)	_4)
Factor for the annular gap α_{gap} [-] 0,5 (1,0) ³⁾											

¹⁾ Partial factors for performance category C1 or C2 see table C13.1; for fischer anchor rods FIS A / RGM the factor for steel ductility is 1,0

fischer injection system FIS V Plus

Performances

Characteristic values for steel failure under tension / shear load for fischer anchor rods and standard threaded rods under seismic action (performance category C1 / C2)

Annex C 12

²⁾ Values in brackets are valid for undersized threaded rods with smaller stress area A_s and for hot dip galvanised standard threaded rods according to EN ISO 10684:2004+AC:2009.

³⁾ Values in brackets are valid for filled annular gaps between the anchor rod and the through-hole in the attachment. It is necessary to use the fischer filling disc according to Annex A 5

⁴⁾ No performance assessed

Table C13.1: Partial factors for fischer anchor rods, standard threaded rods under seismic action performance category C1 or C2

Anchor rod / standa	ard threa	ded ro	d		M10	M12	M16	M20	M24	M27	M30	
Tension load, steel		•	•									
Stool zing plate	Steel zinc plated		5.8		1,50							
o sieei zinc biate			8.8		1,50							
a Stainless steel	Stainless steel R and		50	[-]	2,86							
ेष्ठ high corrosion	high corrosion	Property class	70		1,50 ²⁾ / 1,87							
resistant steel I	resistant steel HCR		80		1,60							
Shear load, steel fa	ilure ¹⁾											
Stool zing plate		S	5.8		·			1,25				
o Sieel zing bigge	Steel zinc plated		8.8	[-]				1,25				
Partial Partia Partial Partial Partial Partial Partial Partial Partial Partial	Stainless steel R and		50					2,38				
ल high corrosion	high corrosion	Property class	70				1	,25 ²⁾ / 1,5	6			
resistant steel I	esistant steel HCR		80					1,33				

¹⁾ In absence of other national regulations

fischer injection system FIS V Plus

Performances
Partial factors under seismic action (performance category C1 and C2) for fischer anchor rods and standard threaded rods

Annex C 13

²⁾ Only admissible for high corrosion resistant steel HCR, with f_{yk} / $f_{uk} \ge 0.8$ and $A_5 > 12$ % (e.g. fischer anchor rods)

Table C14.1: Characteristic values for combined pull-out and concrete failure for fischer anchor rods and standard threaded rods in hammer drilled holes under seismic action performance category C1, working life 50 and 100 years

Anchor	rod /	standard thread	ded rod		M10	M12	M16	M20	M24	M27	M30
		ic bond resistan									
Hammer-drilling with standard drill bit or hollow drill bit (dry or wet concrete)											
Tem- perature range	l:	50 °C / 80 °C	τ _{Rk,C1}	[N/mm ²]	4,5	5,5	5,5	5,5	4,5	4,0	4,0
	II:	72 °C / 120 °C			4,0	4,5	4,5	4,5	4,0	3,5	3,5
Hammer	-dril	ling with standa	rd drill	bit or hol	low drill	bit (water	filled ho	le)			
Tem-	l:	50 °C / 80 °C	τ _{Rk,C1}	[N/mm²]	_1)	5,0	5,0	4,5	4,0	3,5	3,5
perature range	II:	72 °C / 120 °C			_1)	4,0	4,0	4,0	3,5	3,0	3,0
Installati	Installation factors										
Dry or wet concrete		γinst	[-]	1,0							
Water filled hole				_1)			1	,2		·	

¹⁾ No performance assessed

fischer injection system FIS V Plus

Performances
Characteristic values under seismic action (performance category C1) for fischer anchor rods and standard threaded rods, working life 50 and 100 years

Annex C 14

Table C15.1: Characteristic values for combined pull-out and concrete failure for fischer anchor rods in hammer drilled holes under seismic action performance category C2; working life 50 and 100 years

Anchor r	od /	standard thread	ed rod		M12	M16	M20				
Characteristic bond resistance, combined pullout and concrete cone failure											
Hammer-drilling with standard drill bit or hollow drill bit (dry or wet concrete)											
Tem-	l:	I: 50 °C / 80 °C		[N]/mm21	1,5	1,3	2,1				
perature range	II:	72 °C / 120 °C	τ _{Rk,C2}	[N/mm ²]	1,3	1,2	1,9				
Hammer-drilling with standard drill bit or hollow drill bit (water filled hole)											
Tem-	l:	50 °C / 80 °C	_	[N/mm²]	1,3	1,1	1,8				
perature range	H:	72 °C / 120 °C	τ _{Rk,C2}		1,1	1,0	1,6				
Displace	mer	nt-Factors for ten	sion lo	ad ¹⁾							
δN,C2 (DLS)-I	δN,C2 (DLS)-Factor			//NI/mm2\1	0,20	0,13	0,21				
δ N,C2 (ULS)-F	δn,c2 (ULS)-Factor			(N/mm ²)]	0,38	0,18	0,24				
Displacement-Factors for shear load ²⁾											
δv,C2 (DLS)-Factor				m/kNI	0,18	0,10	0,07				
δv,C2 (ULS)-Factor			[III	ım/kN]	0,25	0,14	0,11				

1) Calculation of effective displacement:

 $\delta_{\text{N,C2 (DLS)}} = \delta_{\text{N,C2 (DLS)-Factor}} \cdot \tau_{\text{Ed}}$

 $\delta_{\text{N,C2 (ULS)}} = \delta_{\text{N,C2 (ULS)-Factor}} \cdot \tau_{\text{Ed}}$

(τ_{Ed} : Design value of the applied tensile stress)

 $\delta_{\text{V,C2 (DLS)}} = \delta_{\text{V,C2 (DLS)-Factor}} \cdot V_{\text{Ed}}$

 $\delta_{\text{V,C2 (ULS)}} = \delta_{\text{V,C2 (ULS)-Factor}} \cdot V_{\text{Ed}}$

(V_{Ed}: Design value of the applied shear force)

 $^{\scriptscriptstyle{(3)}}$ No performance assessed

fischer injection system FIS V Plus

Performances
Characteristic values under seismic action (performance category C2) for fischer anchor rods; working life 50 and 100 years

Annex C 15

²⁾ Calculation of effective displacement: