

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-15/0352 of 14 April 2020

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the Deutsches Institut für Bautechnik **European Technical Assessment:** Trade name of the construction product fischer concrete screw ULTRACUT FBS II Product family Mechanical fasteners for use in concrete to which the construction product belongs fischerwerke GmbH & Co. KG Manufacturer Klaus-Fischer-Straße 1 72178 Waldachtal DEUTSCHLAND Manufacturing plant fischerwerke This European Technical Assessment 20 pages including 3 annexes which form an integral part contains of this assessment This European Technical Assessment is EAD 330232-01-0601 issued in accordance with Regulation (EU) No 305/2011, on the basis of This version replaces ETA-15/0352 issued on 30 October 2018

European Technical Assessment ETA-15/0352 English translation prepared by DIBt

Page 2 of 20 | 14 April 2020

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 20 | 14 April 2020

European Technical Assessment ETA-15/0352 English translation prepared by DIBt

Specific Part

1 Technical description of the product

The fischer concrete screw ULTRACUT FBS II is an anchor of sizes 6, 8, 10, 12 and 14 mm made of hardened carbon steel. The anchor is screwed into a predrilled cylindrical drill hole. The special thread of the anchor cuts an internal thread into the member while setting. The anchorage is characterised by mechanical interlock in the special thread.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading)	See Annex B4, Annex C 1 and C 2
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C 1 and C 2
Displacements and Durability	See Annex C 7 and Annex B 1
Characteristic resistance and displacements for seismic performance categories C1 and C2	See Annex C 3, C 4 and C 7

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1
Resistance to fire	See Annex C 5 and C 6

European Technical Assessment ETA-15/0352

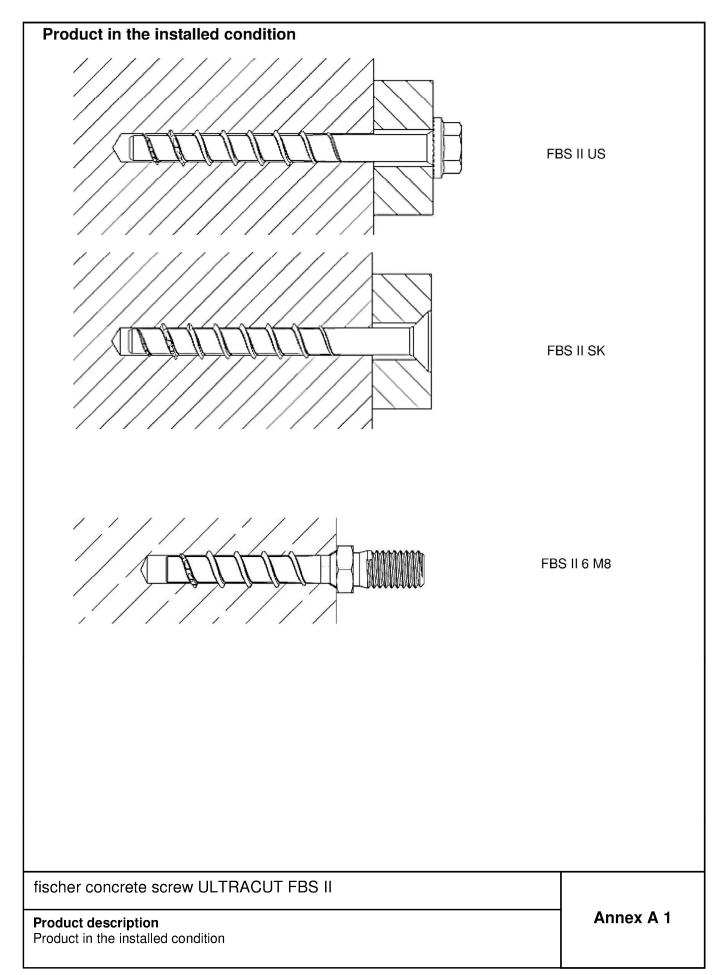
Page 4 of 20 | 14 April 2020

English translation prepared by DIBt

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with European Assessment Document EAD No. 330232-01-0601 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1


5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

Issued in Berlin on 14 April 2020 by Deutsches Institut für Bautechnik

BD Dipl.-Ing. Andreas Kummerow Head of Department *beglaubigt:* Tempel

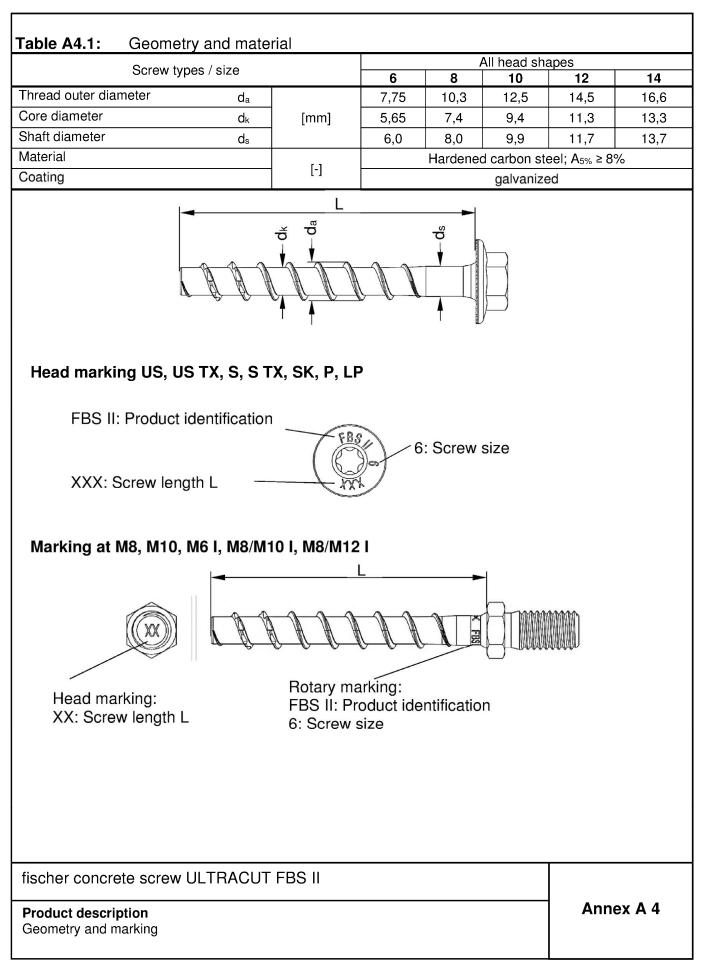
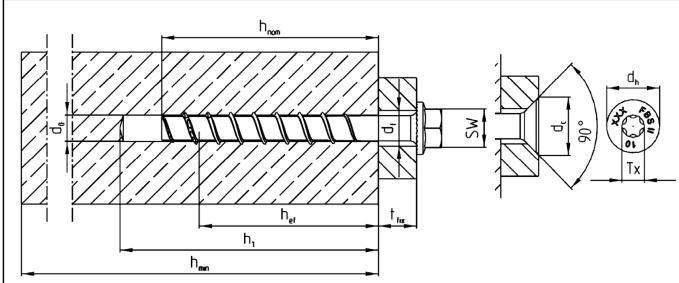

Table A2.1: Screv	v types FBS II	6	
FBS II 6			
Hexagon head with formed washer (US)	L SQA	<u>AANNIN</u>	
Hexagon head with formed washer and TX-drive (US TX)		<u>ANNA</u>	
Countersunk Head (SK)	Say	<u>ATTTT</u>	
Pan head (P)	FBS		
Large Pan head (LP)	Eff.	A A A A	
Hexagon head and connection thread M8 or M10 (M)		THING	
Internal thread combined (M6 I; M8/M10 I; M8/M12 I)			
fischer concrete scre	W ULTRACUT	FBS II	
Product description Screw types FBS II 6			Annex A 2

Table A3.1: Screw ty	pes FBS II 8	- 14	
FBS II 8 - 14			
Hexagon head with formed washer (US)			
Hexagon head with formed washer and TX-drive (US TX)			
Countersunk Head (SK)	FASI		
Hexagon head (S)	133	<u>IIIII</u>	
Hexagon head with TX-drive (S TX)		<u>IANNI</u>	
fischer concrete screw	ULTRACUT F	BS II	
Product description Screw types FBS II 8 to 14			Annex A 3

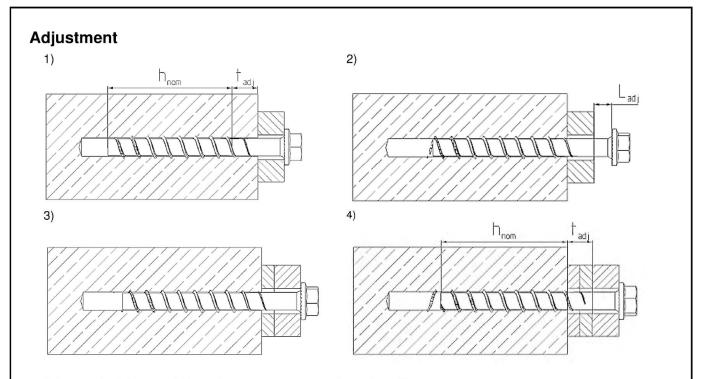
Page 8 of European Technical Assessment ETA-15/0352 of 14 April 2020

Size	6	6 8		10		12				14		
Nominal embedment depth [mm]	40- 55	50	65	55	65	85	60	75	100	65	85	115
Static and quasi-static loads in cracked and uncracked concrete						٢	/					
Fire exposure												
Seismic performance category C1	\checkmark		\checkmark			\checkmark			\checkmark			\checkmark
Seismic performance category C2												
 Use conditions (Environmental conditions Structures subjected to dry internal conditions Design: Anchorages are to be designed under the concrete work Verifiable calculation notes and drawings The position of the screw is indicated on the (e.g. position of the screw relative to reinf) Design of fastenings according to EN 1999 Installation: Hammer drilling or hollow drilling: All sizes and embedment depths Alternative diamond drilling: All sizes and Screw installation carried out by appropriation responsible for technical matters on site In case of aborted hole: New hole must be hole or closer, if the hole is filled with a higoblique tensile or shear load. 	e respo are to the de forcem 02-4: 2 embe ately q e drille gh stre	ponsib to be p lesign ment c 2018 a pedmen qualifi	orepare drawir or to su and E nt dep ied per a mini a morta	ed tak ngs upport OTA T ths fro rsonn mum ar and edmet	ts, etc Fechn om dia el anc distar l only nt dep	ameted ameted undence of if the	er 8 er the straight for the straight fo	e load TR 05 super the da	ls to b 55 vision epth c n the	e ancl of the	pers aborte	on


Intended use Specification Annex B 1

BS II 6									nne			
Jominal embedment depth		h						All head shat $40 \le h_{nom} \le 100$				
Jominal embedment depth		h _{nom} do			6 6,4							
Cutting diameter of drill bits		d _{cut} ≤	<									
Clearance hole diameter		d _f ≤		[mm]	8							
Drill hole depth		u =			0 h _{nom} + 10 ¹⁾							
Drill hole depth		h_≥			h _{nom} + 20							
with adjustable setting))					
orque impact screw driver	max	[Nm]				450						
Maximum installation torque netrical screws or hexagon lead shapes M and I		[Nm]				10						
¹⁾ Value can be reduced to Table B2.2: Installat								ure				
BS II 6			US TX		Ρ	LP	M8		M8/M10 I	M8/M12 I		
Vrench size SW	[mm]	1	0		-		10	13		15		
X size TX	[-]	-		30								
lead diameter dh		1	7	13,5	14,4	17,5			-			
hickness of fixture $t_{fix} \leq$	[mm]			L - h _{nom}								
.ength of screw $\frac{L_{min}}{L_{min}}$							4()				
L _{max} =				325					55			
hnor							ТХ	dh FBS KXXX SW	-			
fischer concrete screw Intended use		ACUT	FBS	II					Ann	ex B 2		
Installation parameters FBS												

Table B3.1: Installation parameters FBS II 8 - 14														
Size								FBS II						
				3		10			12			14		
Nominal embedment depth	h _{nom}		50	65	55	65	85	60	75	100	65	85	115	
Nominal drill hole diameter	do		8			10			12			14		
Cutting diameter of drill bits			mm] 8,45 8,10		10,45				12,50		14,50			
Cutting diameter of diamond driller	d _{cut} ≤	[mm]			10,30			12,30			14,30			
Clearance hole diameter	df		10,6 - 12,0		12,8 - 14,0			14	,8 – 16	6,0	16,9 – 18,0			
Wrench size (US,S)	SW		13		15				17					
Tx size	Тx	[-]	40		50									
Head diameter	dh		1	8	21									
Countersunk diameter in fixture	dc		2	0	23									
Drill hole depth			60	75	65	75	95	70	85	110	80	100	130	
Drill hole depth (with adjustable setting)	_ h1 5	[mm]	70	85	75	85	105	80	95	120	90	110	140	
Thickness of fixture	t _{fix} ≤						L	- h _{nom}	l					
Longth of corow	$L_{min} =$		50	65	55	65	85	60	75	100	65	85	115	
Length of screw	L _{max} =		400	415	405	415	435	410	425	450	415	435	465	
Torque impact screw driver	T _{imp,max}	[Nm]	60	00					650					


fischer concrete screw ULTRACUT FBS II

Intended use Installation parameters FBS II 8 - 14 Annex B 3

Page 12 of European Technical Assessment ETA-15/0352 of 14 April 2020

English translation prepared by DIBt

It is permissible to untighten the screw up to two times for adjustment purposes. Therefore the screw may be untightened to a maximum of $L_{adj} = 20$ mm to the surface of the initial fixture.

The total permissible thickness of shims added during the adjustment process is $t_{adj} = 10 \text{ mm}$

Table B4.1:	Minimum thickness of concrete members, minimum spacing and edge
	distance

Sizo			FBS II											
Size		6 8		10			12							
Nominal embedment depth	\mathbf{h}_{nom}		40 to 55	50	65	55	65	85	60	75	100	65	85	11 5
Minimum thickness of concrete member	\mathbf{h}_{min}	[mm]	max.(80; h1 ¹⁾ + 30)	100	120	100	120	140	110	130	150	120	140	18 0
Minimum spacing	Smin		35	3	5		40			50			60	
Minimum edge distance	Cmin		35	3	5		40			50			60	
¹⁾ Drill hole depth according to table B2.1														

fischer concrete screw ULTRACUT FBS II

Intended use Adjustment

Minimum thickness of members, minimum spacing and edge distance

Annex B 4

Installation instruction							
	Drill the hole using hammer drill hollow drill or diamond core drill						
	Drill hole diameter d ₀ and drill hole depth h ₁ according to t	able B2.1 and B3.1					
a) b) b)	Option a): Clean the drill hole						
	Option b): Cleaning of drill hole using a hollow drill or a diamond						
3xdo	 If drilling vertically upwards or If drilling vertically downwards and the drill hole depth has been increased. It is recommended to increase the drill hole depth additional 3 times d₀. 						
	Installation with any torque impa the maximum mentioned torque	•					
	according to table B2.1 and B3.						
	other tools without an indicated	•					
	allowed (e.g. ratchet spanner). moments for impact screw drive decisive.	•					
	After installation a further turning be possible. The head of the sc with the fixture and is not damag	rew must be in contact					
1. 2. 2. <u>a c c c c c c c c c c c c c c c c c c </u>	Optional: It is permissible to adjust the sc Therefore the screw may be unt maximum of $L_{adj} = 20$ mm off the fixture. The total permissible this added during the adjustment pro-	ightened to a e surface of the initial ckness of shims					
3.	is t _{adj} = 10 mm.						
	For seismic performance catego The gap between screw shaft a with mortar; mortar compressive (e. g. FIS V, FIS HB, FIS SB or aid for filling the gap, the filling o recommended.	nd fixture must be filled e strength \geq 50 N/mm ² FIS EM Plus). As an					
fischer concrete screw ULTRACUT FBS II							
Intended use Installation instruction		Annex B 5					

Nominal embedme													
Stool failure for t	ent depth	h _{nom}	[mm]	40	45	50	55						
Steel failure for t	ension load and	l shear l	oad										
Characteristic resi	stance	N _{Rk,s}	[kN]		2	1							
Partial factor		γMs	[-]		1,	4							
Characteristic resi	stance	V ⁰ Rk,s	[kN]	9,0 13,3									
Partial factor		γMs			1,	5							
Factor for ductility		k 7			1,	0							
Characteristic ben	ding resistance	M ⁰ Rk,s	[Nm]		17	,1							
Pullout failure													
Characteristic resistance in	uncracked	N _{Rk,p}	- [kN] -	8,0	10,0	12,0	13,5						
concrete C20/25	cracked	N _{Rk,p}	[]	2,5	3,5 4,0								
	C25/30				1,	12	I						
	C30/37	-			1,2								
Increasing	C35/45	- Ψc			1,								
factors concrete	C40/50	_ Ψ ^υ	[-]		1,4								
	C45/55	_		1,50									
	C50/60	-		1,58									
Installation factor		γinst	[-]		1,								
Concrete cone fa	ilure and solitti	<u> </u>	1 1	ete prvout fai		-							
Effective embedm	•	h _{ef}	[mm]	32	36	40	44						
Factor for uncrack		k _{ucr,N}			11								
Factor for cracked		K _{cr,N}	-[-] -		7,								
Characteristic edg	e distance	Ccr,N		1,5 h _{ef}									
Characteristic spa		Scr,N	-[mm] -	3 h _{ef}									
Charakt. resistanc	e for splitting	N ⁰ Rk,sp	[kN]		min (N ⁰ Rk	,,c ¹⁾ ; N Rк,р)							
Charact. edge dist		C _{cr,sp}			1,5	· •							
splitting			[[mm]										
	or splitting	Scr,sp	<u> </u>		31	lef							
Charakt. spacing f		k ₈	[-] L		2,	0							
Charakt. spacing f	ailure			1,0									
Charakt. spacing f Factor for pryout fa	ailure	γinst			1,	0							
Charakt. spacing f Factor for pryout fa Installation factor		γinst			1,	0							
	ilure	γinst I _f		40	45	50	55						
Charakt. spacing f Factor for pryout fa Installation factor Concrete edge fa	ilure concrete	•	[mm] -	40		50	55						
Charakt. spacing f Factor for pryout fa Installation factor Concrete edge fa Effective length in	ilure concrete	lf		40	45	50	55						
Charakt. spacing f Factor for pryout fa Installation factor Concrete edge fa Effective length in Nominal diameter	ilure concrete of screw	lf		40	45	50	55						
Charakt. spacing f Factor for pryout fa Installation factor Concrete edge fa Effective length in Nominal diameter Adjustment	ilure concrete of screw ss of shims	l _f dnom	[mm] -	40	45 6	50 3 0	55						

Performances

Characteristic values for static and quasi-static action with FBS II 6

Annex C 1

Table C2.1:	Characteris	stic valu	ues fo	r stat	ic an	d qua	asi-sta	atic ad	ction	with	FBS II	8 - 1	4		
Size					-				FBS II						
				8			10			12			14	1	
Nominal embedm	-	h _{nom}	[mm]	50	65	55	65	85	60	75	100	65	85	115	
Steel failure for t				-	_										
Characteristic res	istance	N _{Rk,s}	[kN]	3	5		55			76 103					
Partial factor		γMs	[-]					1	1,4						
Characteristic res	istance	$V^{0}_{Rk,s}$	[kN]	13,1	19,0	29	9,4	34,9	31 31 1,5	,9	42,7	46	,5	61,7	
Partial factor		γMs	[-]												
Factor for ductility		k 7							1,0						
Characteristic ber resistance	nding	$M^0_{Rk,s}$	[Nm]	51			95			165			269		
Pullout failure															
Characteristic resistance in	uncracked	N _{Rk,p}	[kN]					≥	N ⁰ Rk,c	1)					
concrete C20/25	cracked	N _{Rk,p}	[kN]	6	12	9	12			2	≥ N ⁰ Rk,c ¹)			
	C25/30								1,12						
	C30/37	_		1,22											
Increasing	C35/45	- _Ψc		1,32											
factors concrete	C40/50	_ ! -	[-]						1,41						
	C45/55	_							1,50						
	-							1,58							
Installation factor		γinst	[-]						1,0						
Concrete cone fa	ailure and split	tting fail	ure; co	oncre	te pry	out fa	ilure								
Effective embedm	nent depth	h _{ef}	[mm]	40	52	43	51	68	47	60	81	50	67	93	
Factor for uncracl	ked concrete	k ucr,N	[mm]						11,0						
Factor for cracked	d concrete	k cr,N	[mm]						7,7						
Characteristic ede	ge distance	Ccr,N	[mm]						1,5 h _{ef}						
Characteristic spa	acing	Scr,N	[mm]						3 h _{ef}						
Charakt. resistand	ce for splitting	N^0 Rk,sp	[kN]					min (N	1 ⁰ Rk,c ¹⁾ ;	NRk,p)					
Charact. edge dis splitting	tance for	Ccr,sp	[mm]						1,5 h _{ef}						
Charakt. spacing	for splitting	Scr,sp	[mm]						3 h _{ef}						
Factor for pryout	failure	k ₈	[-]	1,0	2,0	1,0				2	.,0				
Installation factor		γinst	[-]						1,0						
Concrete edge fa			1	1			1		1	1	1			_	
Effective length in		lf	[mm]	50	65	55	65	85	60	75	100	65	85	115	
Nominal diameter	of screw	d _{nom}	[mm]	8	3		10			12			14		
Adjustment															
Maximum thickne		t _{adj}	[mm]						10						
Max. number of a	djustments	na	[-]						2						
¹⁾ N ⁰ _{Rk,c} accor	ding EN 1992-4	4:2018													
fischer concre	ete screw UL	TRACL	JT FB	S II											

Performances

Characteristic values for static and quasi-static action with FBS II 8 - 14

Annex C 2

-BS II 6 Nominal embedment depth	h _{nom}	ſm	im]	40	45	50	55
Steel failure for tension load and]	40	45	00	
	N _{Rk,s,C}	1				21	
Characteristic resistance	VRk,s,C	——————————————————————————————————————	ן [ו		6,3	21	9,3
Without filling of the annular gap ¹⁾					-,-	0,5	
With filling of the annular gap ¹⁾	$- \alpha_{gap}$	[-]				1,0	
Pullout failure						·	
Characteristic resistance in cracked concrete	N _{Rk,p,C}	1 [ki	N]	2,5	3,5	4,0	5,0
Concrete cone failure						-	
Effective embedment depth	h _{ef}			32	36	40	44
Characteristic edge distance	Ccr,N	[m	im] 🗌		1	,5 h _{ef}	ł
Characteristic spacing	Scr,N					3 h _{ef}	
Installation factor	γinst	[-]				1,0	
Concrete pryout failure							
Factor for pryout failure	k ₈	[-]				2,0	
Concrete edge failure						-1	
Effective length in concrete	lf	[m	im]	40	45	50	55
Nominal diameter of screw	d_{nom}					6	
						12	
Nominal embedment depth	h_{nom}	[mm]		8 65	10 85		14 115
Nominal embedment depth Steel failure for tension load and	h _{nom} d shear l	[mm] oad				100	
Steel failure for tension load and		oad					
	d shear I			65	85	100	115
Steel failure for tension load and Characteristic resistance Without filling of the annular gap ¹⁾	<mark>d shear l</mark> N _{Rk,s,C1} V _{Rk,s,C1}	oad [kN]		65 35	85 55 22,3	100 76	115
Steel failure for tension load and Characteristic resistance Without filling of the annular gap ¹⁾ With filling of the annular gap ¹⁾	d shear l N _{Rk,s,C1}	oad		65 35	85 55 22,3 0	100 76 26,9	115
Steel failure for tension load and Characteristic resistance Without filling of the annular gap ¹⁾ With filling of the annular gap ¹⁾ Pullout failure	<mark>d shear l</mark> N _{Rk,s,C1} V _{Rk,s,C1}	oad [kN]		65 35	85 55 22,3 0	100 76 26,9 ,5	115
Steel failure for tension load and Characteristic resistance Without filling of the annular gap ¹⁾ With filling of the annular gap ¹⁾ Pullout failure Characteristic resistance in	<mark>d shear I</mark> <u>N</u> Rk,s,C1 VRk,s,C1 - α _{gap}	oad [kN] [-]		65 35	85 55 22,3 0	100 76 26,9 ,5	115 103 38,3
Steel failure for tension load and Characteristic resistance Without filling of the annular gap ¹⁾ With filling of the annular gap ¹⁾ Pullout failure Characteristic resistance in cracked concrete	<mark>d shear l</mark> N _{Rk,s,C1} V _{Rk,s,C1}	oad [kN]		65 35 11,4	85 55 22,3 0	100 76 26,9 ,5 ,0	115 103 38,3
Steel failure for tension load and Characteristic resistance Without filling of the annular gap ¹⁾ With filling of the annular gap ¹⁾ Pullout failure Characteristic resistance in cracked concrete Concrete cone failure	<mark>d shear I</mark> <u>N_{Rk,s,C1}</u> V _{Rk,s,C1} - α _{gap} N _{Rk,p,C1}	oad [kN] [-]		65 35 11,4 12	85 55 22,3 0 1	100 76 26,9 ,5 ,0 ≥ N ⁰ Rk,c	,2 ²
Steel failure for tension load and Characteristic resistance Without filling of the annular gap ¹⁾ With filling of the annular gap ¹⁾ Pullout failure Characteristic resistance in cracked concrete Concrete cone failure Effective embedment depth	<mark>d shear I</mark> <u>NRk,s,C1</u> VRk,s,C1 - αgap NRk,p,C1 hef	[kN]		65 35 11,4	85 55 22,3 0 1 68	100 76 26,9 ,5 ,0 ≥ № _{Rk,c}	115 103 38,3
Steel failure for tension load and Characteristic resistance Without filling of the annular gap ¹⁾ With filling of the annular gap ¹⁾ Pullout failure Characteristic resistance in cracked concrete Concrete cone failure Effective embedment depth Characteristic edge distance	d shear I NRk,s,C1 VRk,s,C1 αgap NRk,p,C1 hef Ccr,N	oad [kN] [-]		65 35 11,4 12	85 55 22,3 0 1 68 1,5	100 76 26,9 ,5 ,0 ≥ N ⁰ _{Rk,c} 81 5 h _{ef}	,2 ²
Steel failure for tension load and Characteristic resistance Without filling of the annular gap ¹⁾ With filling of the annular gap ¹⁾ Pullout failure Characteristic resistance in cracked concrete Concrete cone failure Effective embedment depth Characteristic spacing	d shear I NRk,s,C1 VRk,s,C1 - αgap NRk,p,C1 - hef Ccr,N Scr,N	[kN] [kN] [kN]		65 35 11,4 12	85 55 22,3 0 1 68 1,5 3	100 76 26,9 ,5 ,0 ≥ N ⁰ Rk,c 81 5 h _{ef}	,2 ²
Steel failure for tension load and Characteristic resistance Without filling of the annular gap ¹⁾ With filling of the annular gap ¹⁾ Pullout failure Characteristic resistance in cracked concrete Concrete cone failure Effective embedment depth Characteristic spacing Installation factor	d shear I NRk,s,C1 VRk,s,C1 αgap NRk,p,C1 hef Ccr,N	[kN]		65 35 11,4 12	85 55 22,3 0 1 68 1,5 3	100 76 26,9 ,5 ,0 ≥ N ⁰ _{Rk,c} 81 5 h _{ef}	,2 ²
Steel failure for tension load and Characteristic resistance Without filling of the annular gap ¹⁾ With filling of the annular gap ¹⁾ Pullout failure Characteristic resistance in cracked concrete Concrete cone failure Effective embedment depth Characteristic spacing Installation factor Concrete pryout failure	d shear I NRk,s,C1 VRk,s,C1 - αgap NRk,p,C1 - hef Ccr,N Scr,N	[kN] [kN] [kN]		65 35 11,4 12	85 55 22,3 0 1 1 68 1,5 3 1	100 76 26,9 ,5 ,0 ≥ N ⁰ Rk,c 81 5 h _{ef}	,2 ²
Steel failure for tension load and Characteristic resistance Without filling of the annular gap ¹⁾ With filling of the annular gap ¹⁾ Pullout failure Characteristic resistance in cracked concrete Concrete cone failure Effective embedment depth Characteristic spacing Installation factor Concrete pryout failure Factor for pryout failure	<mark>d shear I</mark> NRk,s,C1 VRk,s,C1 Cagap NRk,p,C1 hef Cor,N Sor,N γinst	[kN] [kN] [kN] [mm]		65 35 11,4 12	85 55 22,3 0 1 1 68 1,5 3 1	100 76 26,9 ,5 ,0 ≥ N ⁰ Rk,c 81 5 h _{ef} h _{ef} ,0	,2 ²
Steel failure for tension load and Characteristic resistance Without filling of the annular gap ¹⁾ With filling of the annular gap ¹⁾ Pullout failure Characteristic resistance in cracked concrete Concrete cone failure Effective embedment depth Characteristic spacing Installation factor Concrete pryout failure Factor for pryout failure Concrete edge failure	<mark>d shear I</mark> NRk,s,C1 VRk,s,C1 Cagap NRk,p,C1 hef Cor,N Sor,N γinst	[kN] [kN] [kN] [mm] [-]		65 35 11,4 12	85 55 22,3 0 1 1 68 1,5 3 1	100 76 26,9 ,5 ,0 ≥ N ⁰ Rk,c 81 5 h _{ef} h _{ef} ,0	,2 ²
Steel failure for tension load and Characteristic resistance Without filling of the annular gap ¹⁾ With filling of the annular gap ¹⁾ Pullout failure Characteristic resistance in cracked concrete Concrete cone failure Effective embedment depth Characteristic spacing nstallation factor Concrete pryout failure Eactor for pryout failure Eactor for pryout failure Effective length in concrete	d shear I NRk,s,C1 VRk,s,C1 VRk,s,C1 Carton RRk,p,C1 hef Ccr,N γinst K8	[kN] [kN] [kN] [mm]		65 35 11,4 12 52	85 55 22,3 0 1 1 68 1,5 3 1 2	100 76 26,9 5,5 ,0 ≥ N ⁰ _{Rk,c} 81 5 h _{ef} h _{ef} ,0 2,0	,2 ²)
Steel failure for tension load and Characteristic resistance Without filling of the annular gap ¹⁾ With filling of the annular gap ¹⁾	d shear I NRk,s,C1 VRk,s,C1 VRk,s,C1 Caracteristic of the state o	[kN] [kN] [kN] [kN] [mm] [-]	3 5.	65 35 11,4 12 52 65	85 55 22,3 0 1 1 68 1,5 3 1 2 85	100 76 26,9 5 ,0 ≥ N ⁰ _{Rk,c} 81 5 h _{ef} h _{ef} h _{ef} ,0 2,0 100	,2 ²⁾ 93

Deutsches Institut für Bautechnik

				FB	IS II	
Size			8	10	12	14
Nominal embedment depth	h_{nom}	[mm]	65	85	100	115
Steel failure for tension load a	nd shear	load				
Characteristic resistance	NRk,s,C2	[kN]	35,0	55	76,0	103
	$V_{Rk,s,C2}$	נגואן	13,3	20,4	29,9	35,2
<i>W</i> ith filling of the annular gap ¹⁾	α_{gap}	[-]		1	,0	
Pullout failure						
Characteristic resistance in cracked concrete	N _{Rk,p,C2}	[kN]	2,1	6,0	8,9	17,1
Concrete cone failure				1	1	
Effective embedment depth	h _{ef}		52	68	81	93
Characteristic edge distance	Ccr,N	[mm]		1,5	5 h _{ef}	
Characteristic spacing	Scr,N			3	h _{ef}	
nstallation factor	γinst	[-]		1	,0	
Concrete pryout failure						
Eactor for pryout failure	k ₈	[-]		2	2,0	
Concrete edge failure				1	1	-
Effective length in concrete	lf	[mm]	65	85	100	115
Nominal diameter of screw	dnom		8	10	12	14
¹⁾ Filling of the annular gap a	lccording	annex	B 5. Application	without filling of	the annular gap	not allowed.
¹⁾ Filling of the annular gap a	ccording	annex	B 5. Application	without filling of	the annular gap	not allowed.

Table C5.1: Characteristic	values	for res	istance	to fire with	FBS II 6 ¹⁾								
FBS II 6													
Nominal embedment depth		h _{nom}	[mm]	40	45	50	55						
Steel failure for tension load a	and shea	r load											
		R30			1,0	0							
		R60		0,60									
	N _{Rk,s,fi}	R90		0,50									
Characteristic resistance for all		R120			0,4	10							
head shapes		R30	- [kN] -	1,00									
	.,	R60			0,6	60							
	V _{Rk,s,fi}	R90			0,5								
		R120	-		0,4								
		R30			0,8								
Characteristic bending		R60			0,5								
resistance for all head shapes	M ⁰ Rk,s,fi	R90	[Nm]		0,4								
		R120	-		0,3								
Pullout failure					0,0								
		R30											
		R60	1	0,6	0,9	1,0	1,2						
Characteristic resistance	N _{Rk,p,fi}	R90	[kN]	0,0	0,0	1,0	1,2						
		R120	-	0,5	0,7	0,8	1,0						
Edge distance	<u>.</u>	11120	_	0,0	0,7	0,0	1,0						
R30 to R120		Ccr,fi	[mm]		2 h	lef							
In case of fire attack from more	than one			m edge distar	nce shall be ≥ 3	00 mm							
Spacing			1										
R30 to R120		Scr,fi	[mm]		2 c	cr,fi							
¹⁾ The embedment depth has value.							,						
fischer concrete screw Ul	TRACL	JT FBS	5 11										
Performances Characteristic values for resist	ance to fi	re with F	BS II 6			Ann	ex C 5						

epth n Ioad									FBS	5 11				
·				8	3		10			12	-		14	ļ
n load		h_{nom}	[mm]	50	65	55	65	85	60	75	100	65	85	115
	and sl	near loa	d											
		R30		2,	33		3,45			4,62			6,4	6
		R60	1	1,8	82		2,73			3,66			5,1	1
	N _{Rk,s,fi}	R90	1	1,:	30		2,00			2,69			3,7	5
		R120	1	1,0	04		1,64			2,20			3,0	8
08, 8		R30		2,	33		3,45			4,62			6,4	6
		R60		1,8	82		2,73			3,66			5,1	1
	VRk,s,fi	R90	[KN]	1,	30		2,00			2,69			3,7	5
		R120	1	1,0	04		1,64			2,20			3,0	8
		R30	1	2,	12		2,96							
		R60	1				2,26							
	NRk,s,fi	R90	1	,			1,56							
SK,		R120	1				1,21				c.			-
JS TX,										No pe	erforn	nance	asse	ssed
	V _{Rk,s,fi}						-							
										7.83			12.8	39
All	M0 _{D1-4}					3,89 2,85			-					
	ivi Rk,s,f		[Nm]						-					
shapes										6,14				
			<u> </u>	.,	.,		_,0 !			0,70		I	0,1	
		R30												
				1.5	3.0	2.3	3.0	5.0	2.9	4.2	6.6	3.2	4.9	8,1
е	N _{Rk,p,fi}		[kN]	.,-	-,-	_,_	-,-	-,-	_,-	- ,			.,.	-,-
			1	1.2	2.4	1.8	2.4	4.0	2.3	3.3	5.2	2.5	3.9	6.5
			1	.,_	, .	.,_	, .	.,_	_,_	-,-		,_	_,_	-,-
		Ccr,fi	[mm]						2 h	lef				
m more	e than o	one side	, the m	ninimu	ım ec	lge di	stanc	e sha	II be ≧	≥ 300	mm			
									_					
		Scr,fi	[[mm]						2 c	cr,fi				
	SK, JS TX, S TX All head hapes e m more	SK, JS TX, S TX V _{Rk,s,fi} All head hapes i e N _{Rk,p,fi} m more than c	$\begin{array}{c} \text{US, S} \\ \hline \\ \text{V}_{\text{Rk,s,fi}} & \frac{\text{R30}}{\text{R60}} \\ \hline \\ \text{R90} \\ \hline \\ \text{R120} \\ \hline \\ \text{R30} \\ \hline \\ \text{R60} \\ \hline \\ \text{R90} \\ \hline \\ \text{R120} \\ \hline \\ \text{R60} \\ \hline \\ \text{R90} \\ \hline \\ \text{R120} \\ \hline \\ \hline \\ \text{R60} \\ \hline \\ \text{R90} \\ \hline \\ \text{R120} \\ \hline \\ \hline \\ \text{R60} \\ \hline \\ \hline \\ \text{R90} \\ \hline \\ \hline \\ \text{R120} \\ \hline \\ \hline \\ \text{R60} \\ \hline \\ \hline \\ \text{R90} \\ \hline \\ \hline \\ \text{R120} \\ \hline \\ \hline \\ \text{R60} \\ \hline \\ \hline \\ \text{R90} \\ \hline \\ \hline \\ \text{R120} \\ \hline \\ \hline \\ \hline \\ \text{R00} \\ \hline \\ \hline \\ \text{R120} \\ \hline \\ \hline \\ \hline \\ \text{R00} \\ \hline \\ \hline \\ \text{R120} \\ \hline \\ \hline \\ \hline \\ \text{R00} \\ \hline \\ \hline \\ \hline \\ \text{R120} \\ \hline \\ \hline \\ \hline \\ \text{R00} \\ \hline \\ \hline \\ \text{R120} \\ \hline \\ \hline \\ \hline \\ \text{R00} \\ \hline \\ \hline \\ \hline \\ \text{R120} \\ \hline \\ \hline \\ \hline \\ \text{R00} \\ \hline \\ \hline \\ \hline \\ \text{R120} \\ \hline \\ \hline \\ \hline \\ \text{R00} \\ \hline \\ \hline \\ \hline \\ \text{R120} \\ \hline \\ \hline \\ \hline \\ \text{R00} \\ \hline \\ \hline \\ \hline \\ \hline \\ \text{R120} \\ \hline \\ \hline \\ \hline \\ \hline \\ \text{R00} \\ \hline \\ \hline \\ \hline \\ \hline \\ \text{R120} \\ \hline \\ \hline \\ \hline \\ \hline \\ \text{R00} \\ \hline \\ \hline \\ \hline \\ \hline \\ \text{R120} \\ \hline \\ \text{R00} \\ \hline \\ \hline \\ \hline \\ \hline \\ \ \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline$	$\begin{array}{c c} \text{US, S} & \hline & \hline & R30 \\ \hline & R60 \\ \hline & R90 \\ \hline & R120 \\ \hline & R120 \\ \hline & R120 \\ \hline & R60 \\ \hline & R90 \\ \hline & R120 \\ \hline & R120 \\ \hline & & \\ STX, \\ STX, \\ STX, \\ STX, \\ \hline & R60 \\ \hline & R90 \\ \hline & R120 \\ \hline & & \\ R90 \\ \hline & & \\ R120 \\ \hline & & \\ R90 \\ \hline & & \\ R120 \\ \hline & & \\ R90 \\ \hline & & \\ R120 \\ \hline & & \\ R90 \\ \hline & & \\ R120 \\ \hline & & \\ R90 \\ \hline & & \\ R120 \\ \hline & & \\ R90 \\ \hline & & \\ R120 \\ \hline & & \\ R90 \\ \hline & & \\ R120 \\ \hline & & \\ R00 \\ \hline & & \\ R120 \\ \hline & & \\ R00 \\ \hline & & \\ R120 \\ \hline & & \\ R00 \\ \hline & & \\ R120 \\ \hline & & \\ R00 \\ \hline & & \\ R120 \\ \hline & & \\ R00 \\ \hline & & \\ R120 \\ \hline & & \\ R00 \\ \hline & & \\ R120 \\ \hline & & \\ R00 \\ \hline & & \\ R120 \\ \hline & & \\ R00 \\ \hline & & \\ R120 \\ \hline & & \\ R00 \\ \hline & & \\ R120 \\ \hline & & \\ R00 \\ \hline & & \\ R120 \\ \hline & & \\ R00 \\ \hline & & \\ R120 \\ \hline & & \\ R00 \\ \hline & & \\ R120 \\ \hline & & \\ R00 \\ \hline & & \\ R120 \\ \hline & & \\ R00 \\ \hline & & \\ R120 \\ \hline & & \\ R00 \\ \hline & & \\ R120 \\ \hline & & \\ R00 \\ \hline & & \\ R120 \\ \hline & & \\ R00 \\ \hline & & \\ R120 \\ \hline & & \\ R00 \\ \hline & & \\ R120 \\ \hline & & \\ R00 \\ \hline & & \\ R00 \\ \hline & & \\ R10 \\ \hline & & \\ R00 \\ \hline & & \\ R10 \\ \hline & & \\ R00 \\ \hline & & \\ R10 \\ \hline & & \\ R00 \\ \hline & & \\ R10 \\ \hline & \\ R10 \\ \hline & \\ R10 \\ \hline \\ & \\ R10 \\ \hline \\ R10 \\$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

			6	1)		8	1	10	FBS II		12			14	
Nominal embedment depth	\mathbf{h}_{nom}	[mm]	40	55	50	65	55	65	85	60	75	100	65	85	11
Tension load in cracked concrete	Ν	[kN]	2,0	3,5	2,9	5,7	4,3	5,7	9,6	5,5	8,0	12,5	6,1	9,4	15,
Displacement	δ _{N0} δ _{N∞}	[mm]	1,1 2,5	1,4 2,5	0,5 1,3	0,9 1,0	0,7 0,7	0,7 0,7	0,8 0,8	0,7 1,3	0,9 0,9	0,8 0,8	0,8 1,1	1,0 1,0	0,8
Tension load in uncracked concrete	N N	[kN]	4,0	7,0	7,9	12,0	6,8	8,8	13,5	7,7	11,0	17,4	8,5	13,2	21,
Displacement ·	δνο δν∞	[mm]	1,0 1,7	1,8 2,6	0,9 1,4	1,4 1,4	0,9	0,9	1,4	0,9 1,4	1,1 1,4	1,4	1,0 1,1	1,3 1,3	1, ⁻
Table C7.2: Displa	acem	ents c	lue to	shea	ır loa	ds (st	atic)								
Size				-1)					FBS II						
Nominal embedment	h _{nom}	[mm]	40	⁽¹⁾ 55	50	3 65	55	10 65	85	60	12 75	100	65	14 85	11
depth Shear load in cracked and uncracked	V	[kN]	4,5	6,7	6,2	9,0	14,0	14,0	16,6	15,9	15,9	21,2	23,0	23,0	30,
depth Shear load in cracked and uncracked concrete	ν δν₀ δν∞	· [mm]	2,0 2,9	2,9 4,4	6,2 1,4 2,0	9,0 1,4 2,1	14,0 3,2 4,9	14,0 3,2 4,9	16,6 3,2 4,9	15,9 2,5 3,8	15,9 2,5 3,8	21,2 3,4 5,1	23,0 2,8 4,2	23,0 2,8 4,2	5,4
depth Shear load in cracked and uncracked concrete Displacement ¹⁾ Intermediate value Table C7.3: Displa	V δν₀ δν∞ es by l	[mm] inear ir	2,0 2,9 nterpol	2,9 4,4 ation	1,4	1,4 2,1	3,2 4,9	3,2 4,9 nic pe	3,2 4,9	2,5 3,8	2,5 3,8	3,4 5,1 egory	2,8 4,2	2,8	5,4
depth Shear load in cracked and uncracked concrete Displacement ¹⁾ Intermediate value Table C7.3: Displa Size	ν δν∞ es by I	[mm] inear ir ents c	2,0 2,9 nterpol	2,9 4,4 ation	1,4	1,4 2,1 eads (3,2 4,9	3,2 4,9 nic pe	3,2 4,9	2,5 3,8	2,5 3,8	3,4 5,1 egory 2	2,8 4,2	2,8 4,2	5,4
depth Shear load in cracked and uncracked Concrete Displacement ¹⁾ Intermediate value Table C7.3: Displa Size Nominal embedment c	ν δν∞ es by I	[mm] inear ir ents c	2,0 2,9 Iterpol	2,9 4,4 ation	1,4	1,4 2,1 pads (3,2 4,9	3,2 4,9	3,2 4,9 erform	2,5 3,8	2,5 3,8 e cate	3,4 5,1 egory 2 0	2,8 4,2	2,8 4,2 14	30, [,] 5,4 8,1
depth Shear load in cracked and uncracked concrete Displacement	ν δν∞ es by I	inear ir ents c h	2,0 2,9 hterpol	2,9 4,4 ation tensi	1,4	1,4 2,1 ads (<u>8</u> 65	3,2 4,9	3,2 4,9 nic pe	3,2 4,9 erform 10 85	2,5 3,8	2,5 3,8 cate	3,4 5,1 egory 2 0 9	2,8 4,2	2,8 4,2 14 115	5,4
depth Shear load in cracked and uncracked Concrete Displacement ¹⁾ Intermediate value Table C7.3: Displa Size Nominal embedment of Displacement DLS	V δv∞ es by l acemo	inear ir ents c h δΝ.c	2,0 2,9 Iterpol lue to	2,9 4,4 ation tensi	1,4 2,0	1,4 2,1 bads (<u>8</u> 65 0,5 1,7	3,2 4,9 seisr	3,2 4,9 nic pe	3,2 4,9 erform 10 85 0,8 2,8	2,5 3,8 nance FBS II	2,5 3,8 cate 10 0, 2,	3,4 5,1 egory 2 0 9 7	2,8 4,2 C2)	2,8 4,2 14 115 1,3	5,4
depth Shear load in cracked and uncracked concrete Displacement ¹⁾ Intermediate value Table C7.3: Displa Size Nominal embedment of Displacement DLS Displacement ULS Table C7.4: Displa	V δv∞ es by l acemo	inear ir ents c h δΝ.c	2,0 2,9 Iterpol lue to	2,9 4,4 ation tensi	1,4 2,0	1,4 2,1 ads (<u>8</u> 65 0,5 1,7 ds (se	3,2 4,9 seisr	3,2 4,9 nic pe	3,2 4,9 erform 10 85 2,8 forma	2,5 3,8 nance FBS II	2,5 3,8 cate 10 0,9 2,9	3,4 5,1 9 9 7 ory C	2,8 4,2 C2)	2,8 4,2 115 1,3 5,0	5,4
depth Shear load in cracked and uncracked concrete Displacement ¹⁾ Intermediate value Table C7.3: Displa Size Nominal embedment of Displacement DLS Displacement ULS Table C7.4: Displa Size	V δv∞ es by l acemo	[mm] inear ir ents c <u>h</u> δ _{Ν,c} δ _{Ν,c}	2,0 2,9 nterpol lue to	2,9 4,4 ation tensi	1,4 2,0	1,4 2,1 2,1 0,5 0,5 1,7 ds (se 8	3,2 4,9 seisr	3,2 4,9 nic pe	3,2 4,9 erform 10 85 0,8 2,8 forma 10	2,5 3,8 nance FBS II	2,5 3,8 cate 12 10 0,7 2,7 categ	3,4 5,1 egory 2 0 9 7 ory C 2	2,8 4,2 C2)	2,8 4,2 14 115 1,3 5,0	5,4
depth Shear load in cracked and uncracked concrete Displacement ¹⁾ Intermediate value Table C7.3: Displa Size Nominal embedment of Displacement DLS Displacement ULS Table C7.4: Displa	V δv∞ es by l acemo	inear ir ents c <u>h</u> δΝ.c ents c	2,0 2,9 Iterpol lue to	2,9 4,4 ation tensi	1,4 2,0	1,4 2,1 ads (<u>8</u> 65 0,5 1,7 ds (se	3,2 4,9 seisr	3,2 4,9 nic pe	3,2 4,9 erform 10 85 2,8 forma	2,5 3,8 nance FBS II	2,5 3,8 cate 10 0,9 2,9	3,4 5,1 egory 2 0 9 7 0 7 0 2 0	2,8 4,2 C2)	2,8 4,2 115 1,3 5,0	5,4

Displacements due to tension and shear loads

Annex C 7

Performances